68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanometer structure as a key to various phenomena in ferroelectrics

, &
Pages 37-42 | Received 17 Aug 2020, Accepted 30 Dec 2020, Published online: 26 May 2021

References

  • A. M. Glass, D. von der Linde, and T. J. Negran, High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett. 25 (4), 233 (1974). DOI: 10.1063/1.1655453.
  • I. F. Kanaev, and V. K. Malinovsky, Photogalvanic and photorefractive effects in lithium niobate, Sov. Phys. Solid State 7, 2149 (1982).
  • V. I. Belinicher, and B. I. Sturman, The photogalvanic effect in media lacking a center of symmetry, Uspekhi Fizicheskikh. Nauk 130 (3), 415 (1980). DOI: 10.3367/UFNr.0130.198003b.0415.
  • B. I. Sturman, and V. M. Fridkin, Photovoltaic Effect in Media without a Center of Symmetry and Related Phenomena (Nauka, Moscow, 1992) [in Russian].
  • I. F. Kanaev, V. K. Malinovsky, and A. M. Pugachev, Hot electron contribution to transport processes in lithium niobate crystals, Sov. Phys. Solid State 29, 396 (1987).
  • I. F. Kanaev, V. K. Malinovsky, and A. M. Pugachev, Changes in photogalvanic and photorefractive characteristics of LiNbO3 under the light, Ferroelectrics 75 (1), 209 (1987). DOI: 10.1080/00150198708008224.
  • I. F. Kanaev et al., Short-lived local fields excitation in LiNbO3 under light exposure, Ferroelectrics Lett. 16 (5-6), 183 (1993). DOI: 10.1080/07315179308203362.
  • I. F. Kanaev, and V. K. Malinovsky, Violation of rules of restriction of hologram recording and reading in LiNbO3, Ferroelectrics 126 (1), 67 (1992). DOI: 10.1080/00150199208227037.
  • I. F. Kanaev, and V. K. Malinovsky, Photoinduced destruction of coherent light beams by photorefractive crystals, Ferroelectrics 170 (1), 219 (1995). DOI: 10.1080/00150199508014212.
  • Light Scattering near Phase Transitions, Ed. By H. Z. Cummins and A. P. Levanyuk (North-Holland, Amsterdam, 1983 Nauka, Moscow, 1990).
  • N. V. Surovtsev et al., The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate, Phys. Solid State 45 (3), 534 (2003)., DOI: 10.1134/1.1562243.
  • A. M. Pugachev, H. Anwar, and S. Kojima, Order-disorder nature of lithium tantalate probed by broad band Brillouin scattering, Phys. Stat. Sol. (c) 1 (11), 3122 (2004). DOI: 10.1002/pssc.200405361.
  • N. V. Surovtsev et al., Low-frequency Raman spectra in LiNbO3: Within and beyond the standard paradigm of ferroelectric dynamics, Phys. Rev. B. 72 (10), 104303 (2005)., DOI: 10.1103/PhysRevB.72.104303.
  • N. V. Surovtsev et al., Investigation of the phase transition in lithium tantalate by Brillouin light scattering, Phys. Solid State 48, 2317 (2006). DOI: 10.1134/S1063783406120122.
  • A. G. Kuznetsov, V. K. Malinovsky, and N. V. Surovtsev, Specific features in the behavior of the central peak in Raman spectra of lithium tantalate, Phys. Solid State 48 (12), 2317 (2006). DOI: 10.1134/S1063783406120122.
  • A. G. Kuznetsov et al., Salient properties of Raman central peak in LiNbO3 and LiTaO3 crystals, Ferroelectrics 348 (1), 177 (2007)., DOI: 10.1080/00150190701196401.
  • V. K. Malinovsky et al., Low frequency Raman scattering in BaTiO3 crystal, Ferroelectrics 443 (1), 124 (2013)., DOI: 10.1080/00150193.2013.778658.
  • V. K. Malinovskii, A. M. Pugachev, and N. V. Surovtsev, Central peak in the strontium titanate crystal near the tetragonal_to_cubic phase transition, Phys. Solid State 54 (5), 924 (2012). DOI: 10.1134/S1063783412050265.
  • V. K. Malinovsky, A. M. Pugachev, and N. V. Surovtsev, Low – frequency Raman scattering study of the ferroelectric phase transition in the DKDP crystals, Phys. Solid State 50 (6), 1137 (2008). DOI: 10.1080/00150190902848065.
  • V. K. Malinovsky, A. M. Pugachev, and N. V. Surovtsev, Central peak in Raman spectra of ferroelectric KDP and DKDP crystals, Ferroelectrics 379 (1), 43 (2009). DOI: 10.1080/00150190902848065.
  • V. A. Abalmassov, A. M. Pugachev, and N. V. Surovtsev, Dielectric susceptibility of a deuterated KDP crystal from experiment on Raman scattering and in the cluster approximation, Phys. Solid State 53 (7), 1371 (2011). DOI: 10.1134/S106378341107002X.
  • V. A. Abalmassov, and A. S. Yurkov, Landau potential of a KDP crystal in the cluster approximation of the pseudospin model, Phys. Solid State 54 (5), 984 (2012). DOI: 10.1134/S1063783412050022.
  • V. A. Abalmassov, A. M. Pugachev, and N. V. Surovtsev, Order parameter dynamics and hydrogen bond potential in DKDP, Ferroelectrics 440 (1), 113 (2012). DOI: 10.1080/00150193.2012.746608.
  • V. A. Abalmassov, A. M. Pugachev, and N. V. Surovtsev, Dynamics of the order parameter and the potential of the hydrogen bond in a ferroelectric DKDP crystal, J. Exp. Theor. Phys. 116 (2), 280 (2013). DOI: 10.1134/S1063776113020076.
  • V. A. Abalmassov, Monte Carlo studies of the ferroelectric phase transition in KDP, Ferroelectrics 538 (1), 1 (2019). DOI: 10.1080/00150193.2019.1569978.
  • V. K. Malinovsky, A. M. Pugachev, and N. V. Surovtsev, Study of the central peak in Raman spectra of SBN crystals, Bull. Russ. Acad. Sci. Phys. 74 (9), 1231 (2010). DOI: 10.3103/S1062873810090133.
  • I. V. Zaytseva et al., Optical investigations of fluctuation of order parameter in THz range in SrxBa1-xNb2O6 crystals with different chemical compositions, Ferroelectrics 560 (1), 102 (2020)., DOI: 10.1080/00150193.2020.1722890.
  • G. Burns, and F. H. Dacol, Glassy polarization behaviour in ferroelecrics conpounds PbMg1/3Nb2/3O3 and PbZn1/3Nb2/3O3, Solid State Commun 48 (10), 853 (1983). DOI: 10.1016/0038-1098(83)90132-1.
  • G. Burns, and F. H. Dacol, Crystalline ferroelectrics with glassy polarization behavior, Phys. Rev. B. 28 (5), 2527 (1983). DOI: 10.1103/PhysRevB.28.2527.
  • A. S. Bhalla et al., Measurements of strain and the optical indices in the ferroelectric Ba0.4Sr0.6Nb2O6: Polarization effects, Phys. Rev. B Condens Matter 36 (4), 2030 (1987)., DOI: 10.1103/PhysRevB.28.2527.
  • D. Viehland et al., Deviation from Curie-Weiss behavior in relaxor ferroelectrics, Phys. Rev. B Condens. Matter 46 (13), 8003 (1992).,DOI: 10.1103/PhysRevB.46.8003.
  • J.-H. Ko et al., Precursor dynamics in the ferroelectric phase transition of barium titanate single crystals studied by Brillouin light scattering, Phys. Rev. B. 84 (9), 094123 (2011)., DOI: 10.1103/PhysRevB.84.094123.
  • J.-H. Ko et al., Effects of Sr content and bias field on acoustic properties of strontium barium niobate studied by Brillouin light scattering, Appl. Phys. Lett. 99 (21), 212902 (2011)., DOI: 10.1063/1.3663622.
  • V. I. Kovalevskii et al., Second harmonic generation in the paraelectric phase in powders and ceramics of BaTiO3, Phys. Solid State 54 (5), 920 (2012)., DOI: 10.1134/S1063783412050204.
  • A. M. Pugachev et al., Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation, Phys. Rev. Lett. 108 (24), 247601 (2012).,DOI: 10.1103/PhysRevLett.108.247601.
  • A. M. Pugachev et al., Second harmonic generation study of local polar inhomogeneities in Pb3(MgNb2)O9, Phys. Solid State 57 (3), 472 (2015)., DOI: 10.1134/S1063783415030245.
  • A. M. Pugachev et al., Dependence of acoustic anomalies on chemical composition in strontium barium niobate crystals (from conventional ferroelectric to relaxor) probed by Brillouin light scattering, Ferroelectrics 542 (1), 21 (2019)., DOI: 10.1080/00150193.2019.1574657.
  • A. M. Pugachev et al., Temperature dependence of the spontaneous polarization, acoustic and strain anomalies in strontium barium niobate crystals of different chemical compositions probed by the second harmonic generation technique, Ferroelectrics 560 (1), 54 (2020)., DOI: 10.1080/00150193.2020.1722883.
  • A. M. Pugachev et al., Comparison of acoustic and nonlinear optic properties of strontium barium niobate crystals of different compositions, Ferroelectrics 538 (1), 126 (2019)., DOI: 10.1080/00150193.2019.1569995.
  • A. M. Pugachev et al., Relaxor-like features in pressure-treated barium titanate powder, Appl. Phys. Lett. 107 (10), 102902 (2015)., DOI: 10.1063/1.4930824.
  • A. M. Pugachev et al., Local residual stresses in pressure-treated barium titanate probed by inelastic light scattering, Ferroelectrics 496 (1), 225 (2016)., DOI: 10.1080/00150193.2016.1155395.
  • A. M. Pugachev et al., Local residual stresses in pressure-treated barium titanate powders probed by second harmonic generation, Ferroelectrics 501 (1), 9 (2016).,. DOI: 10.1080/00150193.2016.1198199.
  • A. M. Pugachev et al., Uniaxial mechanical stresses and their influence on the parameters of the ferroelectric phase transition in pressure-treated barium titanate, Ferroelectrics 508 (1), 161 (2017)., DOI: 10.1080/00150193.2017.1289769.
  • I. V. Zaytseva et al., Residual mechanical stresses in pressure treated BaTiO3 powder, Ceram. Int 45 (9), 12455 (2019)., DOI: 10.1016/j.ceramint.2019.03.179.
  • A. M. Pugachev et al., Anharmonicity and local noncentrosymmetric regions in BaTiO3 pressed powder studied by the Raman line temperature dependence, Ceram. Int. 46 (14), 22619 (2020)., DOI: 10.1016/j.ceramint.2020.06.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.