56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dielectric properties of ferroelectric diisopropylammonium iodide embedded in porous glass

, , &
Pages 56-63 | Received 17 Aug 2020, Accepted 30 Dec 2020, Published online: 26 May 2021

References

  • K. M. Rabe, C. H. Ahn, and J.-M. Triscone, Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer, 2007), p. 388.
  • D.-W. Fu et al., Diisopropylammonium chloride: A ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization, Adv. Mater. 23 (47), 5658 (2011). DOI: 10.1002/adma.201102938.
  • D.-W. Fu et al., Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal, Science 339 (6118), 425 (2013). DOI: 10.1126/science.1229675.
  • C. Jiang et al., Effect of counter anions on ferroelectric properties of diisopropylammoniumcation based molecular crystals, Phys. Status Solidi A. 214 (6), 1700029 (2017). DOI: 10.1002/pssa.201700029.
  • C. Wang et al., Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics, Chem. Rev. 112 (4), 2208 (2012). DOI: 10.1021/cr100380z.
  • J. Zaumseil, and H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors, Chem. Rev. 107 (4), 1296 (2007). DOI: 10.1021/cr0501543.
  • O. V. Rogazinskaya et al., Properties of nanoporous aluminum oxide with triglycine sulfate and Rochelle salt inclusions, Phys. Solid State 51 (7), 1518 (2009). DOI: 10.1134/S1063783409070506.
  • S. V. Baryshnikov et al., Ferroelectricity in Rochelle salt nanoparticles confined to porous alumina, Ferroelectrics 396 (1), 3 (2010). DOI: 10.1080/00150191003791659.
  • S. V. Baryshnikov et al., Dielectric properties of mesoporous sieves filled with NaNO2, Ferroelectrics 363 (1), 177 (2008). DOI: 10.1080/00150190802026127.
  • S. V. Baryshnikov et al., Studies of TGS in nanoscale silicate matrices by nonlinear dielectric spectroscopy, Bull. Russ. Acad. Sci. Phys. 75 (8), 1112 (2011). DOI: 10.3103/S1062873811080065.
  • A. Y. Milinskii et al., Phase transitions of SC(NH2)2 ferroelectrics in AL2O3-based nanoporous matrices, Phys. Solid State 59 (9), 1783 (2017). DOI: 10.1134/S1063783417090207.
  • B. F. Borisov et al., Ferroelastic phase transition in LiCsSO4 embedded into molecular sieves, Phys. Lett. A 375 (2), 183 (2010). DOI: 10.1016/j.physleta.2010.11.008.
  • S. V. Baryshnikov et al., Impact of nanoconfinement on the diisopropylammonium chloride (C6H16ClN) organic ferroelectric, Phase Trans. 91 (3), 293 (2018). DOI: 10.1080/01411594.2017.1378880.
  • S. V. Baryshnikov et al., Size effect in nanocomposites based on molecular ferroelectric diisopropylammonium bromide, Phys. Solid State 61 (2), 134 (2019). DOI: 10.1134/S1063783419020057.
  • A. Y. Milinskii et al., Dielectric properties of an organic ferroelectric of bromide diisopropylammonium embedded into the pores of nanosized Al2O3 films, J. Phys.: Condens. Matter 31, 485704 (2019). DOI: 10.1088/1361-648X/ab3cf8.
  • A. Yu. Milinskiy et al., Phase transitions in bulk and confined organic ferroelectric DIPAI, Results Phys. 17, 103069 (2020). DOI: 10.1016/j.rinp.2020.103069.
  • R. K. Saripalli et al., Observation of ferroelectric phase and large spontaneous electric polarization in organic salt of diisopropylammonium iodide, J. Appl. Phys. 121 (11), 114101 (2017). DOI: 10.1063/1.4978515.
  • A. Piecha-Bisiorek et al., Phase sequence in diisopropylammonium iodide: avoided ferroelectricity by the appearance of a reconstructed phase, Inorg. Chem. Front. 4 (3), 553 (2017). DOI: 10.1039/C6QI00583G.
  • A. Yu. Milinskiy et al., Dielectric properties of ferroelectric diisopropylammonium iodide, Phase Transit. 92, 406 (2019). DOI: 10.1080/01411594.2019.1591408.
  • S. Ikeda et al., Nonlinear dielectric constant and ferroelectric to paraelectric phase transition in copolymers of vinylidene fluoride and trifluoroethylene, Appl. Phys. 62 (8), 3339 (1987). DOI: 10.1063/1.339294.
  • S. G. Yudin et al., Ferroelectric phase transition in Langmuir-Blodgett films of copper phthalocyanine, Jetp. Lett. 70 (9), 633 (1999). DOI: 10.1134/1.568227.
  • A. Milinskii et al., Nonlinear dielectric response of nanocomposites based on potassium dihydrogen phosphate, Trans. Electr. Electron. Mater. 19 (3), 201 (2018). DOI: 10.1007/s42341-018-0032-x.
  • V. V. Brazhkin, Metastable phases, phase transformations, and phase diagrams in physics and chemistry, Phys.-USP. 49 (7), 719 (2006). DOI: 10.1070/PU2006v049n07ABEH006013.
  • W. L. Zhong et al., Phenomenological study of the size effect on phase transitions in ferroelectric particles, Phys. Rev. B Condens. Matter 50 (2), 698 (1994). DOI: 10.1103/physrevb.50.698.
  • C. L. Wang et al., Size effects of ferroelectric particles described by the transverse Ising model, Phys. Rev. B. 62 (17), 11423 (2000). DOI: 10.1103/PhysRevB.62.11423.
  • A. V. Uskov et al., The transverse Ising model of the ferroelectric phase transition in a system of coupled small particles, Ferroelectrics 482 (1), 70 (2015). DOI: 10.1080/00150193.2015.1056708.
  • V. Fridkin, and S. Ducharme, Ferroelectricity at the Nanoscale: Basics and Applications. (Springer-Verlag: Berlin, 2014), p. 122.
  • E. V. Charnaya et al., Ferroelectricity in an array of electrically coupled confined small particles, Ferroelectrics 350 (1), 75 (2007). DOI: 10.10/00150190701369883.
  • A. N. Morozovska, M. D. Glinchuk, and E. A. Eliseev, Phase transitions induced by confinement of ferroic nanoparticles, Phys. Rev. B. 76 (1), 014102 (2007). DOI: 10.1103/PhysRevB.76.014102.
  • A. N. Morozovska et al., Ferroelectricity enhancement in ferroelectric nanotubes, Phys. B 387 (1-2), 358 (2007). DOI: 10.1080/01411590601092746.
  • W. Ma et al., A study of size effects in PbTiO3 nanocrystals by Raman spectroscopy, Phys. Stat. Sol. (A) 166 (2), 811 (1998). DOI: 10.1002/(SICI)1521-396X(199804)166:2 < 811::AID-PSSA811 > 3.0.CO;2-X.
  • M. D. Glinchuk, and A. N. Morozovska, The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties, J. Phys. Condens. Matter 16 (21), 3517 (2004). DOI: 10.1088/0953-8984/16/21/002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.