166
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Structural and magnetic properties of ferroelectric/dielectric BaTiO3/LaMnO3 and BaTiO3/SrTiO3 heterostructures

, , , , , & show all
Pages 144-150 | Received 17 Aug 2020, Accepted 30 Dec 2020, Published online: 26 May 2021

References

  • A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427 (6973), 423 (2004). DOI: 10.1038/nature02308.
  • A. D. Caviglia et al., Electric field control of the LaAlO3/SrTiO3 interface ground state, Nature 456 (7222), 624 (2008). DOI: 10.1038/nature07576.
  • S. Thiel et al., Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science 313 (5795), 1942 (2006). DOI: 10.1126/science.1131091.
  • N. Reyren et al., Superconducting interfaces between insulating oxides, Science 317 (5842), 1196 (2007). DOI: 10.1126/science.1146006.
  • A. Kalabukhov et al., Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3∕SrTiO3 interface, Phys. Rev. B. 75 (12), 121404 (2007). DOI: 10.1103/PhysRevB.75.121404.
  • Y. Chen et al. , Creation of high mobility two-dimensional electron gases via strain induced polarization at an otherwise nonpolar complex oxide interface, Nano Lett. 15 (3), 1849 (2015). DOI: 10.1021/nl504622w.
  • P. Moetakef et al., Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces, Appl. Phys. Lett. 99 (23), 232116 (2011). DOI: 10.1063/1.3669402.
  • C. A. Jackson and S. Stemmer, Interface-induced magnetism in perovskite quantum wells, Phys. Rev. B. 88 (18), 180403 (2013). DOI: 10.1103/PhysRevB.88.180403.
  • J. Biscaras et al., Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3, Nat. Commun. 1, 89 (2010). DOI: 10.1038/ncomms1084.
  • A. Brinkman et al., Magnetic effects at the interface between non-magnetic oxides, Nat. Mater. 6 (7), 493 (2007). DOI: 10.1038/nmat1931.
  • M. K. Niranjan et al., Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces, Phys. Rev. Lett. 103 (1), 016804 (2009). DOI: 10.1103/PhysRevLett.103.016804.
  • K. D. Fredrickson and A. A. Demkov, Switchable conductivity at the ferroelectric interface: Nonpolar oxides, Phys. Rev. B. 91 (11), 115126 (2015). DOI: 10.1103/PhysRevB.91.115126.
  • S. Piskunov and R. I. Eglitis, First principles hybrid DFT calculations of BaTiO3/SrTiO3(001) interface, Solid State Ionics 274, 29 (2015). DOI: 10.1016/j.ssi.2015.02.020.
  • V. V. Kabanov et al., Ab initio investigation of electronic and magnetic properties of antiferromagnetic/ferroelectric LaMnO3/BaTiO3 interface, Mater. Res. Express 7 (5), 055020 (2020). DOI: 10.1088/2053-1591/ab940e.
  • T. Kamiya and M. Kawasaki, ZnO-based semiconductors as building blocks for active devices, MRS Bull. 33 (11), 1061 (2008). DOI: 10.1557/mrs2008.226.
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B), B864 (1964). DOI: 10.1103/PhysRev.136.B864.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mat. Sci. 6 (1), 15 (1996). DOI: 10.1016/0927(96)00008-0.
  • MedeA®, -2.20 (Materials Design, Inc., San Diego, CA, USA, 2015).
  • S. L. Dudarev et al., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study, Phys. Rev. B. 57 (3), 1505 (1998). DOI: 10.1103/PhysRevB.57.1505.
  • I. I. Piyanzina et al., Oxygen vacancies and hydrogen doping in LaAlO3/SrTiO3 heterostructures: Electronic properties and impact on surface and interface reconstruction, J. Phys. Condens. Matter 29, 095501 (2019). DOI: 10.1088/1361-648X/ab1831.
  • D. P. Pavlov et al., Two-dimensional electron gas at the interface of Ba0.8Sr0.2TiO3 ferroelectric and LaMnO3 antiferomagnet, JETP Lett. 106 (7), 460 (2017). DOI: 10.7868/S0370274X17190080.
  • V. M. Mukhortov et al., The synthesis mechanism of complex oxide films formed in dense RF – plasma by reactive sputtering of stoichiometric targets, Ferroelectrics 247 (1), 75 (2000). DOI: 10.1080/00150190008214943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.