61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Domain merging in LaBGeO5 single crystals

, , , , &
Pages 151-157 | Received 17 Aug 2020, Accepted 30 Dec 2020, Published online: 26 May 2021

References

  • A. A. Kaminskiĭ, B. V. Mill', and A. V. Butashin, New low-threshold noncentrosymmetric LaBGeO5 :Nd3+ laser crystal, Sov. J. Quantum Electron. 20 (8), 875 (1990). DOI: 10.1070/QE1990v020n08ABEH007131.
  • A. A. Kaminskii et al., Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals nonlinear optical properties, Raman scattering, spectroscopy, crystal-field analysis, and simulated emission of their activators, Phys. Stat. Sol. (a) 125 (2), 671 (1991). DOI: 10.1002/pssa.2211250227.
  • N. Horiuchi et al., Nonlinear optical properties of new ferroelectric LaBGeO5, Ferroelectrics 169 (1), 273 (1995). DOI: 10.1080/00150199508217339.
  • J. Hirohashi et al., Second harmonic UV generation by novel periodically poled ferroelectrics, Advanced Solid-State Lasers Congress, Paris, OSA, France, AM3A.2, (2013). DOI: 10.1364/ASSL.2013.AM3A.2.
  • J. Hirohashi et al., PP-LBGO device with 2nd-order QPM structure for 266 nm generation, CLEO Science and Innovations 2015, San Jose, CA, United States, STh3H.5, (2015). DOI: 10.1364/CLEO_SI.2015.STh3H.5.
  • J. Hirohashi et al., Fabrication of PP-LBGO device for 266 nm generation with the 1st order QPM structure (Conference Presentation), Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, International Society for Optics and Photonics, 1090206 (2019). DOI: 10.1117/12.2514795.
  • A. Onodera et al., Thermal and dielectric properties of a new ferroelectric LaBGeO5, J. Phys. Soc. Jpn. 62 (12), 4311 (1993). DOI: 10.1143/JPSJ.62.4311.
  • Y. Uesu et al., On the phase transition of new ferroelectric LaBGeO5, J. Phys. Soc. Jpn. 62 (7), 2522 (1993). DOI: 10.1143/JPSJ.62.2522.
  • E. V. Milov, B. A. Strukov, and V. N. Milov, Spontaneous polarization and domain reversal in new ferroelectric LaBGeO5, Ferroelectrics 269 (1), 15 (2002). DOI: 10.1080/00150190211177.
  • B. A. Strukov et al., Switching processes and formation of the stable artificial domain structure in ferroelectric LaBGeO5, Ferroelectrics 314 (1), 105 (2005). DOI: 10.1080/00150190590926247.
  • E. Milov et al., Polarization switching and domain structure in LaBGeO5 crystals, Ferroelectrics 341 (1), 39 (2006). DOI: 10.1080/00150190600889346.
  • A. R. Akhmatkhanov et al., Switching current shape analysis in LBGO single crystals, IOP Conf. Ser: Mater. Sci. Eng. 443, 012001 (2018). DOI: 10.1088/1757-899X/443/1/012001.
  • J. Hirohashi et al., Non-walk-off second harmonic 532 nm generation by PP-LBGO at room temperature operation, Advanced Solid State Lasers, OSA: Washington, DC, AM2A.6, (2015). DOI: 10.1364/ASSL.2015.AM2A.6.
  • A. Akhmatkhanov et al., In situ imaging of domain structure evolution in LaBGeO5 single crystals, Crystals 10 (7), 583 (2020). DOI: 10.3390/cryst10070583.
  • A. A. Esin, A. R. Akhmatkhanov, and V. Ya. Shur, Superfast domain wall motion in lithium niobate single crystals. Analogy with crystal growth, Appl. Phys. Lett. 114 (19), 192902 (2019). DOI: 10.1063/1.5094688.
  • Y. Sheng et al. , Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation, Opt. Express. 18 (16), 16539 (2010). DOI: 10.1364/OE.18.016539.
  • B. Kirbus et al., Real-time 3D imaging of nanoscale ferroelectric domain wall dynamics in lithium niobate single crystals under electric stimuli: implications for domain-wall-based nanoelectronic devices, ACS Appl. Nano Mater. 2 (9), 5787 (2019). DOI: 10.1021/acsanm.9b01240.
  • A. A. Esin, A. R. Akhmatkhanov, and V. Y. Shur, Tilt control of the charged domain walls in lithium niobate, Appl. Phys. Lett. 114 (9), 092901 (2019). DOI: 10.1063/1.5079478.
  • V. Y. Shur et al., Superfast domain walls in KTP single crystals, Appl. Phys. Lett. 111 (15), 152907 (2017). DOI: 10.1063/1.5000582.
  • V. Y. Shur and E. L. Rumyantsev, Kinetics of ferroelectric domain structure: retardation effects, Ferroelectrics 191 (1), 319 (1997). DOI: 10.1080/00150199708015657.
  • V. Y. Shur and E. L. Rumyantsev, Crystal growth and domain structure evolution, Ferroelectrics 142 (1), 1 (1993). DOI: 10.1080/00150199308237878.
  • Y. Ishibashi and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn. 31 (2), 506 (1971). DOI: 10.1143/JPSJ.31.506.
  • J. E. Taylor, J. W. Cahn, and C. A. Handwerker, Overview No. 98 I - Geometric models of crystal growth, Acta Metall. Mater 40 (7), 1443 (1992). DOI: 10.1016/0956-7151(92)90090-2.
  • V. Y. Shur et al., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures, Appl. Phys. Lett. 103 (24), 242903 (2013). DOI: 10.1063/1.4846015.
  • I. S. Baturin et al., Investigation of jerky domain wall motion in lithium niobate, Ferroelectrics 374 (1), 136 (2008). DOI: 10.1080/00150190802427531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.