69
Views
1
CrossRef citations to date
0
Altmetric
Research Article

All-solid-state planar on-chip micro-supercapacitors with excellent areal power performance at ultrahigh scan rates by photolithography

, , , , &
Pages 88-94 | Received 19 Aug 2021, Accepted 20 Feb 2022, Published online: 29 Aug 2022

References

  • J. Chmiola et al., Monolithic carbide-derived carbon films for micro-supercapacitors, Science 328 (5977), 480 (2010). DOI: 10.1126/science.1184126.
  • X. Luo et al., Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy 137, 511 (2015). DOI: 10.1016/j.apenergy.2014.09.081.
  • M. Beidaghi, C. Wei, and C. Wang, Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors, J. Power Sources 196 (4), 2403 (2011). DOI: 10.1016/j.jpowsour.2010.09.050.
  • X. Wang et al., Flexible energy-storage devices: design consideration and recent progress, Adv. Mater. 26 (28), 4763 (2014). DOI: 10.1002/chin.201436285.
  • D. Pech et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (9), 651 (2010). DOI: 10.1038/nnano.2010.162
  • Z. S. Wu, X. L. Feng, and H. M. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage, Natl. Sci. Rev. 1 (2), 277 (2014). DOI: 10.1093/nsr/nwt003.
  • H. Kim et al., Encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors as waterproof wearable energy storage devices, ACS Appl. Mater. Interfaces 8 (25), 16016 (2016). DOI: 10.1021/acsami.6b03504.
  • L. Zhang et al., Recent advances of micro-supercapacitors powered integrated system for flexible electronics, Energy Storage Mater. 32, 402 (2020). DOI: 10.1016/j.ensm.2020.05.025.
  • X. Wang et al., Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices, ChemSusChem 7 (1), 308 (2014). DOI: 10.1002/cssc.201300241.
  • M. S. Balogun et al., Recent advances in metal nitrides as high-performance electrode materials for energy storage devices, J. Mater. Chem. A 3 (4), 1364 (2015). DOI: 10.1039/C4TA05565A.
  • H. Pang et al., Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices, Nano Energy 17, 339 (2015). DOI: 10.1016/j.nanoen.2015.07.030.
  • R. Raccichini et al., The role of graphene for electrochemical energy storage, Nat. Mater. 14 (3), 271 (2015). DOI: 10.1038/nmat4170.
  • M. F. El-Kady, and R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun. 4, 1475 (2013). DOI: 10.1038/ncomms2446.
  • Z. S. Wu et al., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy 1 (1), 107 (2012). DOI: 10.1016/j.nanoen.2011.11.001.
  • L. Zhen et al., Nitrogen and oxygen co-doped graphene quantum dots with high capacitance performance for micro-supercapacitors, Carbon 139, 67 (2018). DOI: 10.1016/j.carbon.2018.06.042.
  • J. Vähäkangas, P. Lantto, and J. Vaara, Faraday rotation in graphene quantum dots: interplay of size, perimeter type, and functionalization, J. Phys. Chem. C 118 (41), 23996 (2014). DOI: 10.1021/jp507892j.
  • H. Yu et al. , Porous carbon derived from metal-organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries , RSC Adv. 9 (17), 9577 (2019). DOI: 10.1039/c9ra01488h.
  • W. Liu et al., Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers, Nanoscale 5 (13), 6053 (2013). DOI: 10.1039/c3nr01139a.
  • B. S. Shen et al., Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes, ACS Appl. Mater. Interfaces 7 (45), 25378 (2015). DOI: 10.1021/acsami.5b07909.
  • K. Lee et al., Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate, Nano Energy 26, 746 (2016). DOI: 10.1016/j.nanoen.2016.06.030.
  • Z. Wu et al., Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nat. Commun. 4 (9), 2487 (2013). DOI: 10.1038/ncomms3487.
  • Z. Yi et al., Flexible conducting polymer transistors with supercapacitor function, J. Polym. Sci. Part B: Polym. Phys. 55 (1), 96 (2017). DOI: 10.1002/polb.24244.
  • M. F. El-Kady et al., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science 335 (6074), 1326 (2012). DOI: 10.1126/science.1216744.
  • X. Li, J. Rong, and B. Wei, Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress, ACS Nano. 4 (10), 6039 (2010). DOI: 10.1021/nn101595y.
  • R. Li et al. , Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode, Chem. Commun. (Camb). 48 (41), 5010 (2012). DOI: 10.1039/c2cc31786a.
  • M. Kortel et al., Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors, Micromachines 11 (9), 866 (2020). DOI: 10.3390/mi11090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.