163
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microstructures and properties of PVDF membranes: effect of the solvent

, , , , , & show all
Pages 95-108 | Received 02 Sep 2021, Accepted 20 Feb 2022, Published online: 29 Aug 2022

References

  • P. Liu, X. Wang, and H. D. Li, Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance, Synth. Met. 181, 72 (2013). DOI: 10.1016/j.synthmet.2013.08.010.
  • V. Vatanpour et al., Antifouling polyvinylidene fluoride ultrafiltration membrane fabricated from embedding polypyrrole coated multiwalled carbon nanotubes, Mater. Sci. Eng. C Mater. Biol. Appl. 89, 41 (2018). DOI: 10.1016/j.msec.2018.03.026.
  • W. Wu et al., Enhanced MPBR with polyvinylpyrrolidone-graphene oxide/PVDF hollow fiber membrane for efficient ammonia nitrogen wastewater treatment and high-density Chlorella cultivation, Chem. Eng. J. 379, 122368 (2020). DOI: 10.1016/j.cej.2019.122368.
  • Z. S. Yan et al., Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: a review, Chem. Eng. Res. Des. 157, 195 (2020). DOI: 10.1016/j.cherd.2020.03.011.
  • A. Karimi et al., The effect of different solvents on the morphology and performance of the ZIF-8 modified PVDF ultrafiltration membranes, Sep. Purif. Technol. 253, 117548 (2020). DOI: 10.1016/j.seppur.2020.117548.
  • S. A. Aani, T. N. Mustafa, and N. Hilal, Ultrafiltration membranes for wastewater and water process engineering: a comprehensive statistical review over the past decade, J. Water Proc. Eng. 35, 101241 (2020). 101241. DOI: 10.1016/j.jwpe.2020.
  • S. Arefi-Oskoui, A. Khataee, and V. Vatanpour, Effect of solvent type on the physicochemical properties and performance of NLHD/PVDF nanocomposite ultrafiltration membranes, Sep. Purif. Technol. 184, 97 (2017). DOI: 10.1016/j.seppur.2017.04.040.
  • T. Nishiyama et al., Effect of solvents on the crystal formation of poly(vinylidene fluoride) film prepared by a spin-coating process, Polym. J. 49 (3), 319 (2017). DOI: 10.1038/pj.2016.116.
  • S. Barrau et al., Nanoscale Investigations of α- and γ-crystal Phases in PVDF-Based Nanocomposites, ACS Appl. Mater. Interfaces 10 (15), 13092 (2018). DOI: 10.1021/acsami.8b02172.
  • J. J. Chen et al., Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites, Appl. Surf. Sci. 448, 320 (2018). DOI: 10.1016/j.apsusc.2018.04.144.
  • Y. Ren et al. , Improved battery performance contributed by the optimized phase ratio of β and α of PVDF, RSC Adv. 9 (51), 29760 (2019). DOI: 10.1039/c9ra04724g.
  • C. Kahrs, and J. Schwellenbach, Membrane formation via non-solvent induced phase separation using sustainable solvents: a comparative study, Polymer 186, 122071 (2020). DOI: 10.1016/j.polymer.2019.122071.
  • A. Bottino et al. , Solubility parameters of poly(vinylidene fluoride), J. Polym. Sci. Polym. Phys. Ed. 26 (4), 785 (1998). DOI: 10.1002/polb.1988.090260405.
  • L. Y. Susan et al., Surface morphology of pvdf membrane and its fouling phenomenon by crude oil emulsion, J. Water Proc. Eng. 15, 55 (2017). DOI: 10.1016/j.jwpe.2016.05.013.
  • I. Vazquez-Fernandez et al., Protic ionic liquids/poly(vinylidene fluoride) composite membranes for fuel cell application, J. Energy Chem. 53 (2), 197 (2020). DOI: 10.1016/j.jechem.2020.04.022.
  • Q. Y. Wang, Z. W. Wang, and Z. C. Wu, Effect of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment, Desalination 297, 79 (2012). DOI: 10.1016/j.desal.2012.04.020.
  • H. H. Chang et al., Effect of solvent on the dipole rotation of poly(vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths, Polymer 115, 164 (2017). DOI: 10.1016/j.polymer.2017.03.044.
  • R. Roche, and F. Yalcinkaya, Incorporation of PVDF Nanofiber Multilayers into Functional Structure for Filtration Application, Nanomaterials 8 (10), 771 (2018). DOI: 10.3390/nano8100771.
  • W. H. Zhu et al., Study on dispersion of reduce graphene oxide on physical performance of Polyvinylidene fluoride composites by Hansen solubility parameters, Colloid Polym. Sci. 297 (2), 213 (2019). DOI: 10.1007/s00396-018-4456-y.
  • M. O. Mavukkandy et al., On the effect of fumed silica particles on the structure, properties and application of PVDF membranes, Sep. Purif. Technol. 187, 365 (2017). DOI: 10.1016/j.seppur.2017.06.077.
  • M. Berczeli, and Z. Weltsch, Enhanced wetting and adhesive properties by atmospheric pressure plasma surface treatment methods and investigation processes on the influencing parameters on HIPS polymer, Polymers 13 (6), 901 (2021). DOI: 10.3390/polym13060901.
  • D. Jacek, and K. Anna, Comparison of surface free energy calculation methods, Appl. Mech. Mater. 791, 259 (2015). DOI: 10.4028/www.scientific.net/AMM.791.259.
  • J. Liu et al., Acryloylmorpholine-grafted PVDF membrane with improved protein fouling resistance, Ind. Eng. Chem. Res. 52 (51), 18392 (2013). DOI: 10.1021/ie403456n.
  • X. Shen et al., Improved fouling resistance of poly(vinylidene fluoride) membrane modified with poly(acryloyl morpholine)-based amphiphilic copolymer, Colloid Polym. Sci. 295 (7), 1211 (2017). DOI: 10.1007/s00396-017-4117-6.
  • X. M. Cai et al., A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR, RSC Adv. 7 (25), 15382 (2017). DOI: 10.1039/C7RA01267E.
  • E. C. Mapunda, B. B. Mamba, and T. A. M. Msagati, Carbon nanotube embedded PVDF membranes: effect of solvent composition on the structural morphology for membrane distillation, Phys. Chem. Earth 100, 135 (2017). DOI: 10.1016/j.pce.2017.01.003.
  • E. Tocci et al., Effect of green solvents in the production of PVDF-specific polymorphs, Ind. Eng. Chem. Res. 59 (12), 5267 (2020). DOI: 10.1021/acs.iecr.9b06701.
  • E. Kabir et al., Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites, J. Phys. D: Appl. Phys. 50 (16), 163002 (2017). DOI: 10.1088/1361-6463/aa5f85.
  • C. N. B. Elizalde et al., Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance, Sep. Purif. Technol. 190, 68 (2018). DOI: 10.1016/j.seppur.2017.08.053.
  • H. Rabiee, M. H. D. A. Farahani, and V. Vatanpour, Preparation and characterization of Emulsion poly (vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane, J. Membr. Sci. 472, 185 (2014). DOI: 10.1016/j.memsci.2014.08.051.
  • Q. D. Wu et al., Superwettable PVDF/PVDF-g-PEGMA Ultrafiltration Membranes, ACS Omega 5 (36), 23450 (2020). DOI: 10.1021/acsomega.0c03429.
  • J. T. Jung et al., Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), J. Membr. Sci. 514 (250), 250–263 (2016). DOI: 10.1016/j.memsci.2016.04.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.