155
Views
0
CrossRef citations to date
0
Altmetric
Regular Articles

Design and experimental investigation of an asymmetric piezoelectric energy harvester based on galloping

, , , &
Pages 94-104 | Received 02 Jun 2022, Accepted 05 Oct 2022, Published online: 03 Jan 2023

References

  • A. P. Marugán et al., A survey of artificial neural network in wind energy systems, Appl. Energy 228, 1822 (2018). DOI: 10.1016/j.apenergy.2018.07.084.
  • D. Gao et al., The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system, Energy 248, 123626 (2022). DOI: 10.1016/j.energy.2022.123626.
  • G. Li et al., Solar energy utilisation: Current status and roll-out potential, Appl. Therm. Eng. 209, 118285 (2022). DOI: 10.1016/j.applthermaleng.2022.118285.
  • M. A. Almoghayer et al., Integration of tidal energy into an island energy system – A case study of Orkney islands, Energy 242, 122547 (2022). DOI: 10.1016/j.energy.2021.122547.
  • J. T. Carlson, and M. Adams, Assessing the consistency of in-stream tidal energy development policy in Nova Scotia, Canada, Marine Policy 113, 103743 (2020). DOI: 10.1016/j.marpol.2019.103743.
  • T. Jin, and J. Kim, What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis, Renew. Sustain. Energy Rev. 91, 464 (2018). DOI: 10.1016/j.rser.2018.04.022.
  • S. A. Sarkodie, and S. Adams, Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa, Sci. Total Environ. 643, 1590 (2018). DOI: 10.1016/j.scitotenv.2018.06.320.
  • X. Shan et al., Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration, Energy 172, 134 (2019). DOI: 10.1016/j.energy.2019.01.120.
  • X. Ma, and S. Zhou, A review of flow-induced vibration energy harvesters, Energy Convers. Manage. 254, 115223 (2022). DOI: 10.1016/j.enconman.2022.115223.
  • B. Ren, and B. Lucey, A clean, green haven?—Examining the relationship between clean energy, clean and dirty cryptocurrencies, Energy Econ. 109, 105951 (2022). DOI: 10.1016/j.eneco.2022.105951.
  • J. Lowitzsch, C. E. Hoicka, and F. J. van Tulder, Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?, Renew. Sustain. Energy Rev. 122, 109489 (2020). DOI: 10.1016/j.rser.2019.109489.
  • G. R. Franzini, and L. O. Bunzel, A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom, J. Fluids Struct. 77, 196 (2018). DOI: 10.1016/j.jfluidstructs.2017.12.007.
  • S. Wang et al., Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration, Energy Convers. Manage. 235, 113980 (2021). DOI: 10.1016/j.enconman.2021.113980.
  • K. Yang et al., Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping: comprehensive parametric study and optimization, Smart Mater. Struct. 29 (7), 075035 (2020). DOI: 10.1088/1361-665X/ab870e.
  • Y. Gong et al., Vortex-induced swing (VIS) motion for energy harvesters and flowmeters, Appl. Phys. Lett. 117 (15), 153904 (2020). DOI: 10.1063/5.0011899.
  • M. Xu et al., Dynamic response mechanism of the galloping energy harvester under fluctuating wind conditions, Mech. Syst. Sig. Process. 166, 108410 (2022). DOI: 10.1016/j.ymssp.2021.108410.
  • W. Sun et al., Low velocity water flow energy harvesting using vortex induced vibration and galloping, Appl. Energy 251, 113392 (2019). DOI: 10.1016/j.apenergy.2019.113392.
  • F. Petrini, and K. Gkoumas, Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts, Energy Build. 158, 371 (2018). DOI: 10.1016/j.enbuild.2017.09.099.
  • M. Eugeni et al., Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter, Aerosp. Sci. Technol. 97, 105634 (2020). DOI: 10.1016/j.ast.2019.105634.
  • J. Liu et al., Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode, Microelectron. Eng. 231, 111333 (2020). DOI: 10.1016/j.mee.2020.111333.
  • C. Bao et al., A piezoelectric energy harvesting scheme based on stall flutter of airfoil section, Eur. J. Mech. B Fluids 75, 119 (2019). DOI: 10.1016/j.euromechflu.2018.11.019.
  • N. T. Giang, and D. L. Phuong, New finite modelling of the nonlinear static bending analysis of piezoelectric FG sandwich plates resting on nonlinear elastic foundations, C. R. Méc. 350 (G1), 99 (2022). DOI: 10.5802/crmeca.106.
  • B. Hao et al., A study of the properties of a piezoelectric ceramic plate in the symmetric fixation mode, IEEE Access 6, 36863 (2018). DOI: 10.1109/ACCESS.2018.2852796.
  • C. Hou et al., A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations, Mech. Syst. Sig. Process. 171, 108963 (2022). DOI: 10.1016/j.ymssp.2022.108963.
  • H. Lv et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun. 12 (1), 834 (2021). DOI: 10.1038/s41467-021-21103-9.
  • X. Zhou et al., Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber, Composites Part B: Engineering 192, 107980 (2020). DOI: 10.1016/j.compositesb.2020.107980.
  • G. Miao et al., A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism, Appl. Energy 305, 117838 (2022). DOI: 10.1016/j.apenergy.2021.117838.
  • Z. Yang et al., Modelling and validation of electret-based vibration energy harvesters in view of charge migration, Int. J. Precis. Eng. Manuf.-Green Technol. 8 (1), 113 (2021). DOI: 10.1007/s40684-019-00156-8.
  • K. F. Wang, and B. L. Wang, Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization, Nanotechnology 29 (25), 255405 (2018). DOI: 10.1088/1361-6528/aab970.
  • A. Kazemi, R. Vatankhah, and M. Farid, Vibration analysis of size-dependent functionally graded micro-plates subjected to electrostatic and piezoelectric excitations, Eur. J. Mech. A Solids 76, 46 (2019). DOI: 10.1016/j.euromechsol.2019.03.007.
  • H. Zhang et al., An asymmetric magnetic-coupled bending-torsion piezoelectric energy harvester: modeling and experimental investigation, Smart Mater. Struct. 31 (1), 015037 (2022). DOI: 10.1088/1361-665X/ac3c04.
  • S. Zhou, and L. Zuo, Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting, Commun. Nonlinear Sci. Numer. Simul. 61, 271 (2018). DOI: 10.1016/j.cnsns.2018.02.017.
  • J. Wang et al., High-performance piezoelectric wind energy harvester with Y-shaped attachments, Energy Convers. Manage. 181, 645 (2019). DOI: 10.1016/j.enconman.2018.12.034.
  • A. Abdelkefi, M. R. Hajj, and A. H. Nayfeh, Piezoelectric energy harvesting from transverse galloping of bluff bodies, Smart Mater. Struct. 22 (1), 015014 (2013). DOI: 10.1088/0964-1726/22/1/015014.
  • L. Zhao, and Y. Yang, An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting, Appl. Energy 212, 233 (2018). DOI: 10.1016/j.apenergy.2017.12.042.
  • Y. Y. Lim et al., A self-tunable wind energy harvester utilising a piezoelectric cantilever beam with bluff body under transverse galloping for field deployment, Energy Convers. Manage. 245, 114559 (2021). DOI: 10.1016/j.enconman.2021.114559.
  • F.-R. Liu et al., Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester, Energy 183, 92 (2019). DOI: 10.1016/j.energy.2019.06.044.
  • J. Wang et al., Enhancement of low-speed piezoelectric wind energy harvesting by bluff body shapes: Spindle-like and butterfly-like cross-sections, Aerosp. Sci. Technol. 103, 105898 (2020). DOI: 10.1016/j.ast.2020.105898.
  • S. Zhou, M. Lallart, and A. Erturk, Multistable vibration energy harvesters: Principle, progress, and perspectives, J. Sound Vib. 528, 116886 (2022). DOI: 10.1016/j.jsv.2022.116886.
  • X. Ma et al., Characterizing nonlinear characteristics of asymmetric tristable energy harvesters, Mech. Syst. Sig. Process. 168, 108612 (2022). DOI: 10.1016/j.ymssp.2021.108612.
  • X. Shan et al., A curved panel energy harvester for aeroelastic vibration, Appl. Energy 249, 58 (2019). DOI: 10.1016/j.apenergy.2019.04.153.
  • D. Huang et al., Response regimes of nonlinear energy harvesters with a resistor-inductor resonant circuit by complexification-averaging method, Sci. China Technol. Sci. 64 (6), 1212 (2021). DOI: 10.1007/s11431-020-1780-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.