79
Views
0
CrossRef citations to date
0
Altmetric
Regular Articles

The effect of Mg2+ substitution cation on structural and dielectric properties of SrTiO3 sintered ceramics

, ORCID Icon, &
Pages 196-203 | Received 22 Jun 2022, Accepted 25 Oct 2022, Published online: 03 Jan 2023

References

  • A. Karp, H. J. Shaw, and D. K. Winslow, Circuit properties of microwave dielectric resonators, IEEE Trans. Microw. Theory Tech. 16 (10), 818 (1968). DOI: 10.1109/TMTT.1968.1126798.
  • V. K. Varadan et al., Microw. J. 35, 116 (1992).
  • R. W. Babbit, T. E. Koscica, and W. C. Drach, Ceramic phase shifters for electronically steerable antenna systems, Microw. J. 35 (1), 63–72 (1992).
  • R. Ott and R. Wordenweber, Improved designs of tunable ferroelectric capacities for microwave applications, Appl. Phys. Lett. 80 (12), 2150 (2002). DOI: 10.1063/1.1459486.
  • P. K. Petrov et al., Improved SrTiO3 multilayers for microwave application: growth and properties, J. Appl. Phys. 84 (6), 3134 (1998). DOI: 10.1063/1.368511.
  • M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).
  • K. A. Müller and H. Burkard, SrTiO3: An intrinsic quantum paraelectric below 4 K, Phys. Rev. B 19 (7), 3593 (1979). DOI: 10.1103/PhysRevB.19.3593.
  • J. M. Worlock and P. A. Fleury, Electric field dependence of optical-phonon frequencies, Phys. Rev. Lett. 19 (20), 1176 (1967). DOI: 10.1103/PhysRevLett.19.1176.
  • M. A. Saifi and L. E. Cross, Dielectric properties of strontium titanate at low temperature, Phys. Rev. B 2 (3), 677 (1970). DOI: 10.1103/PhysRevB.2.677.
  • J. Hemberger et al., Electric-field-dependent dielectric constant and nonlinear susceptibility in SrTiO3, Phys. Rev. B Condens. Matter. 52 (18), 13159 (1995). DOI: 10.1103/physrevb.52.13159.
  • H. Uwe and T. Sakudo, Stress-induced ferroelectricity and soft phonon modes in SrTiO3, Phys. Rev. B 13 (1), 271 (1976). DOI: 10.1103/PhysRevB.13.271.
  • J. G. Bednorz, and K. A. Müller, Sr1−xCaxTiO3: An XY quantum ferroelectric with transition to randomness, Phys. Rev. Lett. 52 (25), 2289 (1984). DOI: 10.1103/PhysRevLett.52.2289.
  • V. V. Lemanov et al., Phase transitions and glasslike behavior in Sr1−xBaxTiO3, Phys. Rev. B 54 (5), 3151 (1996). DOI: 10.1103/PhysRevB.54.3151.
  • V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Ferroelectric properties of SrTiO3-PbTiO3 solid solutions, Phys. Solid State 39, 628 (1997). DOI: 10.1134/1.1129917.
  • R. E. Newnham, Structure-property relations in ceramic capacitors, J. Mater. Educ. 5 (6), 941–83 (1983).
  • W. Hofman, S. Hoffmann, and R. Waser, Dopant influence on dielectric losses, leakage behaviour, and resistance degradation of SrTiO3 thin films, Thin Solid Films 305 (1-2), 66 (1997). DOI: 10.1016/S0040-6090(96)09508-9.
  • B. J. Kim, T. G. Park, and M. H. Kim, Temperature and frequency dependence of dielectric properties of (Ba, Sr, Mg) TiO3 ceramic capacitors, J. Korean Phys. Soc. 32, S289–S291 (1998).
  • P. C. Joshi and M. W. Cole, Mg-doped Ba0.6Sr0.4TiO3 thin films for tunable microwave applications, Appl. Phys. Lett. 77 (2), 289 (2000). DOI: 10.1063/1.126953.
  • W. Chang and L. Sengupta, MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications, J. Appl. Phys. 92 (7), 3941 (2002). DOI: 10.1063/1.1505669.
  • M. W. Cole et al., Low dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods, J. Appl. Phys. 93 (11), 9218 (2003). DOI: 10.1063/1.1569392.
  • O. E. Kvyatkovskii, On the nature of ferroelectricity in Sr1−xAxTiO3 and KTa1−xNbxO3 solid solutions, Phys. Solid State 44, 1135 (2002). DOI: 10.1134/1.1485043.
  • A. Tkach, P. M. Vilarinho, and A. L. Kholkin, Effect of Mg doping on the structural and dielectric properties of strontium titanate ceramics, Appl. Phys. A 79 (8), 2013 (2004). DOI: 10.1007/s00339-003-2341-z.
  • M. Tanabe et al., A low-impedance coplanar waveguide using an SrTiO3 thin film for GaAs power MMIC's, IEEE Trans. Microw. Theory Tech. 48 (5), 872 (2000). DOI: 10.1109/22.841891.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • K. Y. Bak et al., Structural and electrical properties of Nb-substituted LiTa1-xNbxO3, Sains Malays. 43 (10), 1573 (2014).
  • S. Raja et al., Thickness dependence on structural, dielectric and AC conduction studies of vacuum evaporated Sr doped BaTiO3 thin films, Optik 127 (6), 3200 (2016). DOI: 10.1016/j.ijleo.2015.12.072.
  • T. Xian et al., Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity, Nanoscale Res. Lett. 9 (1), 1 (2014).
  • M. A. F. de Souza et al., Synthesis and characterization of Sr1-xMgxTiO3 obtained by the polymeric precursor method, Mater. Lett. 59 (5), 549 (2005). DOI: 10.1016/j.matlet.2004.10.014.
  • M. N. Ha et al., Morphology-controlled synthesis of SrTiO3/TiO2 heterostructures and their photocatalytic performance for water splitting, RSC Adv. 6 (25), 21111 (2016). DOI: 10.1039/C6RA03472A.
  • M. Abbas et al., Structural, optical, electrical and dielectric properties of (Sr1-xMgx) (Sn0.5Ti0.5)O3 (X = 0.00, 0.25, 0.50, 0.75) ceramics via solid state route, Ceram. Int. 47 (21), 30129 (2021). DOI: 10.1016/j.ceramint.2021.07.191.
  • A. Singh et al., Origin of large dielectric constant with large remnant polarization and evidence of magnetoelectric coupling in multiferroic La modified BiFeO3-PbTiO3 solid solution. arXiv:1002.1545 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.