50
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanical and magnetic properties of Mg-Ni hydrosilicate nanoscrolls as study objects for atomic force microscopy

, , , , , & show all
Pages 1-7 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 07 Mar 2023

References

  • A. Krasilin et al., Cation doping approach for nanotubular hydrosilicates curvature control and related applications, Crystals 10 (8), 654 (2020). DOI: 10.3390/cryst10080654.
  • A. Krasilin, Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers, Clays Clay Miner. 68 (5), 436 (2020). DOI: 10.1007/s42860-020-00086-6.
  • P. Scarfato et al., Development and evaluation of halloysite nanotube-based carrier for biocide activity in construction materials protection, Appl. Clay Sci. 132, 336 (2016). DOI: 10.1016/j.clay.2016.06.027.
  • G. Cavallaro et al., Halloysite nanotubes: controlled access and release by smart gates, Nanomaterials 7 (8), 199 (2017). DOI: 10.3390/nano7080199.
  • A. Krasilin et al., Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls, Appl. Clay Sci. 173, 1 (2019). DOI: 10.1016/j.clay.2019.03.007.
  • C. Zhang et al., Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect, Chem. Commun. (Camb.) 49 (82), 9383 (2013). DOI: 10.1039/C3CC43895C.
  • J. Ashok et al., Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability, Catal, Sci. Technol. 8, 1730 (2018). DOI: 10.1039/C7CY02475D.
  • Z. Bian, and S. Kawi, Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane, J. CO2 Util. 18, 345 (2017). DOI: 10.1016/j.jcou.2016.12.014.
  • A. Krasilin et al., Halloysite nanoscrolls as superacid catalysts for oligomerization of hexene-1, Russ, J. Appl. Chem. 92, 1251 (2019). DOI: 10.1134/S1070427219090106.
  • J. Park et al., Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer–Tropsch reaction, Nano Res. 10 (3), 1044 (2017). DOI: 10.1007/s12274-016-1364-7.
  • Y. Liu, and M. Liu, Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes, Compos, Sci. Technol. 143, 56 (2017). DOI: 10.1016/j.compscitech.2017.03.001.
  • N. Afanas’eva et al., Relaxation processes in an aromatic polyamide-imide and composites on its basis with hydrosilicate nanoparticles, Polym. Sci. Ser. A 58 (6), 956 (2016). DOI: 10.1134/S0965545X16060018.
  • H. Mo et al., High thermal conductivity and high impact strength of epoxy nanodielectrics with functionalized halloysite nanotubes, RSC Adv. 6 (73), 69569 (2016). DOI: 10.1039/C6RA06717D.
  • K. Roy et al., Up-to-date review on the development of high performance rubber composites based on halloysite nanotube, Appl. Clay Sci. 183, 105300 (2019). DOI: 10.1016/j.clay.2019.105300.
  • K. Saritas et al., Magnetism and piezoelectricity in stable transition metal silicate monolayers, Phys. Rev. Mater. 5, 104002 (2021). DOI: 10.1103/PhysRevMaterials.5.104002.
  • A. Ankudinov, A new algorithm for measuring the young’s modulus of suspended nanoobjects by the bending-based test method of atomic force microscopy, Semiconductors 53 (14), 1891 (2019). DOI: 10.1134/S1063782619140021.
  • A. V. Ankudinov, and M. M. Khalisov, Bending test of nanoscale consoles in atomic force microscope, Tech. Phys. Lett. 48, 21 (2022). DOI: 10.21883/TPL.2022.02.52839.19010.
  • A. Ankudinov et. al., AFM bending tests of a suspended rod-shaped object: Accounting for object fixing conditions. Phys. Rev. E (2022). under review.
  • A. Ankudinov, On the accuracy of the probe-sample contact stiffness measured by an atomic force microscope, Nanosyst.: Phys. Chem. Math. 10, 642 (2019). DOI: 10.17586/2220-8054-2019-10-6-642-653.
  • A. Ankudinov, and M. Khalisov, Contact stiffness measurements with an atomic force microscope, Tech. Phys. 65 (11), 1866 (2020). DOI: 10.1134/S1063784220110031.
  • A. Ankudinov, and A. Minarskii, Optimization of measurement of the interaction force vector in atomic force microscopy, Tech. Phys. 66 (7), 835 (2021). DOI: 10.1134/S1063784221060037.
  • A. Ankudinov, On AFM measurements of the interaction force vector by means of interferometry, optical lever, and the piezoresistive method, J. Surf. Investig. 16 (2), 247 (2022). DOI: 10.1134/S1027451022030028.
  • A. Krasilin et al., Surface tension and shear strain contributions to the mechanical behavior of individual Mg-Ni-phyllosilicate nanoscrolls, Part. & Part. Syst. Charact. 38 (12), 2100153 (2021). DOI: 10.1002/ppsc.202100153.
  • M. Khalisov et al., Young`s modulus of phyllosilicate nanoscrolls measured by the AFM and by the in-situ TEM indentation, Nanosyst.: Phys. Chem. Math 12, 118 (2021). DOI: 10.17586/2220-8054-2021-12-1-118-127.
  • A. Krasilin et. al., Thermal treatment impact on the mechanical properties of Mg3Si2O5(OH)4 nanoscrolls. Materials 15 (24), 9023 (2022). DOI: 10.3390/ma15249023.
  • E. K. Khrapova et. al., Thermal behavior of Mg − Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation, ChemNanoMat 7 (3), 207 (2021). DOI: 10.1002/cnma.202100018.
  • D. O. Alikin et al., In-plane polarization contribution to the vertical piezoresponse force microscopy signal mediated by the cantilever buckling, Appl. Surf. Sci. 543, 148808 (2021). DOI: 10.1016/j.apsusc.2020.148808.
  • A. S. Kalinin et al., An atomic force microscopy mode for nondestructive electromechanical studies and its application to diphenylalanine peptide nanotubes, Ultramicroscopy 185, 49 (2018). DOI: 10.1016/j.ultramic.2017.11.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.