102
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermally assisted growth of bulk domains created by femtosecond laser in magnesium doped lithium niobate

, , , &
Pages 47-52 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 07 Mar 2023

References

  • J. A. Armstrong et al., Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962). DOI: 10.1103/PhysRev.127.1918.
  • M. M. Fejer et al., Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum. Electron. 28, 2631 (1992). DOI: 10.1109/3.161322.
  • V. Ya. Shur, Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3, in Frontiers of Ferroelectricity, edited by S. B. Lang and H. L. W. Chan (Springer New York, NY, USA, 2007). pp. 199–210.
  • B. Chen et al., Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides, IEEE J. Sel. Top. Quantum Electron. 8, 675 (2002). DOI: 10.1109/JSTQE.2002.1016372.
  • C.-Q. Xu, and B. Chen, Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation, Opt. Lett. 29 (3), 292 (2004). DOI: 10.1364/OL.29.000292.
  • M. F. Saleh et al., Photonic circuits for generating modal, spectral, and polarization entanglement, IEEE Photon. J. 2, 736 (2010). DOI: 10.1109/JPHOT.2010.2062494.
  • S. Tanzilli et al., On the genesis and evolution of integrated quantum optics, Laser Photon. Rev. 6, 115 (2012). DOI: 10.1002/lpor.201100010.
  • V. Y. Shur, A. R. Akhamtkhanov, and I. S. Baturin, Micro- and nano-domain engineering in lithium niobate, Appl. Phys. Rev. 2, 040604 (2015). DOI: 10.1063/1.4928591.
  • M. Houe, and P. D. Townsend, An introduction to methods of periodic poling for second-harmonic generation, J. Phys. D 28, 1747 (1995). DOI: 10.1088/0022-3727/28/9/001.
  • V. Berger, Nonlinear photonic crystals, Phys. Rev. Lett. 81, 4136 (1998). DOI: 10.1103/PhysRevLett.81.4136.[Database].
  • N. G. R. Broderick et al., Hexagonally poled lithium niobate: A two-dimensional non- linear photonic crystal, Phys. Rev. Lett. 84 (19), 4345 (2000). DOI: 10.1103/PhysRevLett.84.4345.
  • A. Arie, and N. Voloch, Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals, Laser Photon. Rev. 4, 355 (2010). DOI: 10.1002/lpor.200910006.
  • M. Ayoub, J. Imbrock, and C. Denz, Second harmonic generation in multi-domain χ2 media: from disorder to order, Opt. Express. 19 (12), 11340 (2011). DOI: 10.1364/OE.19.011340.
  • X. Chen et al., Ferroelectric domain engineering by focused infrared femtosecond pulses, Appl. Phys. Lett. 107, 141102 (2015). DOI: 10.1063/1.4932199.
  • X. Chen et al., Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides, Opt. Lett. 41 (11), 2410 (2016). DOI: 10.1364/OL.41.002410.
  • J. Thomas et al., Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate, Laser Photon. Rev. 7, L17 (2013). DOI: 10.1002/lpor.201200116.
  • J. Imbrock et al., Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography, Appl. Phys. Lett. 113, 252901 (2018). DOI: 10.1063/1.5053870.
  • T. Xu et al., Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate, Nat. Photon. 12, 591 (2018). DOI: 10.1038/s41566-018-0225-1.
  • X. Chen et al., Optical induction and erasure of ferroelectric domains in tetragonal PMN-38PT crystals, Adv. Opt. Mater. 10, 2102115 (2022). DOI: 10.1002/adom.202102115.
  • J. Imbrock et al., Thermally assisted fabrication of nonlinear photonic structures in lithium niobate with femtosecond laser pulses, Opt. Express. 30 (22), 39340 (2022). DOI: 10.1364/OE.470716.
  • S. M. Saltiel et al., Generation of second-harmonic conical waves via nonlinear Bragg diffraction, Phys. Rev. Lett. 100 (10), 103902 (2008). DOI: 10.1103/PhysRevLett.100.103902.
  • D. Wei et al., Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal, Nat. Photon. 12, 596 (2018). DOI: 10.1038/s41566-018-0240-2.
  • S. Kudryashov et al., Ferroelectric nanodomain engineering in bulk lithium niobate crystals in ultrashort-pulse laser nanopatterning regime, Nanomaterials 12, 4147 (2022). DOI: 10.3390/nano12234147.
  • V. Y. Shur et al., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures, Appl. Phys. Lett. 103, 242903 (2013). DOI: 10.1063/1.4846015.
  • V. Y. Shur et al., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation, Appl. Phys. Lett. 99, 082901 (2011). DOI: 10.1063/1.3628646.
  • V. Y. Shur et al., Dimensionality increase of ferroelectric domain shape by pulse laser irradiation, Acta Mater. 219, 117270 (2021). DOI: 10.1016/j.actamat.2021.117270.
  • V. Y. Shur et al., Self-assembled shape evolution of the domain wall and formation of nanodomain wall traces induced by multiple IR laser pulse irradiation in lithium niobate, J. Appl. Phys 127, 094103 (2020). DOI: 10.1063/1.5130951.
  • V. Y. Shur et al., Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating, AIP Adv. 5, 107110 (2015). DOI: 10.1063/1.4933079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.