79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of the cooling rate onto efficiency of the poling by field cooling of BaTiO3 ceramics

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 36-42 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 15 Mar 2023

References

  • Y. Huan et al., Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics, J. Eur. Ceram. Soc 34, 1445 (2014). DOI: 10.1016/j.jeurceramsoc.2013.11.030.
  • C. Zhao, Y. Huang, and J. Wu, Multifunctional barium titanate ceramics via chemical modification tuning phase structure, InfoMat 2, 1163 (2020). DOI: 10.1002/inf2.12147.
  • D. Hennings, Barium titanate based ceramic materials for dielectric use, J. Eur. Ceram. Soc 3, 91 (1987). DOI: 10.1016/0267-3762(87)90031-2.
  • G. H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc 82, 797 (1999). DOI: 10.1111/j.1151-2916.1999.tb01840.x.
  • P. R. Potnis, N. T. Tsou, and J. E. Huber, A review of domain modelling and domain imaging techniques in ferroelectric crystals, Materials 4, 417 (2010). DOI: 10.3390/ma4020417.
  • G. Arlt, The role of domain walls on the dielectric, elastic and piezoelectric properties of ferroelectric ceramics, Ferroelectrics 76, 451 (1987). DOI: 10.1080/00150198708016967.
  • M. H. Garrett et al., A method for poling barium titanate, Ferroelectrics 120, 167 (1991). DOI: 10.1080/00150199108008240.
  • S. Wada et al., Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes, J. Appl. Phys 98, 014109 (2005). DOI: 10.1063/1.1957130.
  • J. Hlinka, P. Ondrejkovic, and P. Marton, The piezoelectric response of nano-twinned BaTiO3, Nanotechnology 20, 105709 (2009). DOI: 10.1088/0957-4484/20/10/105709.
  • T. Sluka et al., The stress-assisted enhancement of piezoelectric properties due to mechanically incompatible domain structures in BaTiO3, 2010 IEEE Int. Symp. Appl. Ferroelectrics (ISAF) 1, 1 (2010). DOI: 10.1109/ISAF.2010.5712237.
  • W. F. Rao, and Y. U. Wang, Domain wall broadening mechanism for domain size effect of enhanced piezoelectricity in crystallographically engineered ferroelectric single crystals, Appl. Phys. Lett. 90, 041915 (2007). DOI: 10.1063/1.2435584.
  • K. Okazaki, Normal poling and high poling of ferroelectrics ceramics and space-charge effects, Jpn. J. Appl. Phys 32, 4241 (1993). DOI: 10.1143/JJAP.32.4241.
  • H. Du et al., An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics, Appl. Phys. Lett. 91, 202907 (2007). DOI: 10.1063/1.2815750.
  • E. Bassiouny, Poling of ferroelectric ceramics, Appl. Sci 6, 998 (2006). DOI: 10.3923/jas.2006.998.1002.
  • B. Kounga et al., High-temperature poling of ferroelectrics, J Appl. Phys 104, 024116 (2008). DOI: 10.1063/1.2959830.
  • M. E. Lines, and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977
  • D. Denning, J. Guyonnet, and B. J. Rodriguez, Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond, Int. Mater. Rev 61, 46 (2016). DOI: 10.1179/1743280415Y.0000000013.
  • E. Soergel, Piezoresponse force microscopy (PFM), J. Phys. D Appl. Phys 44, 464003 (2011). DOI: 10.1088/0022-3727/44/46/464003.
  • J. Döring et al., Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate, Nanoscale 10 (37), 18074 (2018). DOI: 10.1039/c8nr04081h.
  • S. Wada et al., Preparation of barium titanate crystals with engineered domain configurations by using a new poling method with both an electric field and a uniaxial stress field and their piezoelectric properties, J. Kor. Phys. Soc 51, 874 (2007). DOI: 10.3938/jkps.51.874.
  • A. Hershkovitz et al., Mesoscopic origin of ferroelectric-ferroelectric transition in BaTiO3: orthorhombic-to-tetragonal domain evolution, Act. Mat 187, 186 (2019). DOI: 10.1016/j.actamat.2020.01.051.
  • D. O. Alikin et al., Calibration of the in-plane PFM response by the lateral force curves, Ferroelectrics 559, 15 (2020). DOI: 10.1080/00150193.2020.1722000.
  • N. Balke et al., Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy, Nanotechnology 27 (42), 425707 (2016). DOI: 10.1088/0957-4484/27/42/425707.
  • D. Alikin et al., Strain-polarization coupling mechanism of enhanced conductivity at the grain boundaries in BiFeO3 thin films, Appl. Mater. Today 20, 100740 (2020). DOI: 10.1016/j.apmt.2020.100740.
  • V. Y. Shur et al., Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals, J. Appl. Phys 113, 187211 (2013). DOI: 10.1063/1.4801969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.