44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of mechanical activation on the crystal structure and dielectric properties of ceramics based on bismuth ferrite

, , , &
Pages 43-53 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 15 Mar 2023

References

  • Y. N. Venevtsev, V. V. Gagulin, and V. N. Lyubimov, Segnetomagnetiki (Ferroelectromagnets) (Moscow, Nauka, 1982). [in Russian]
  • J. Wang et al., Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (5613), 1719 (2003). DOI: 10.1126/SCIENCE.1080615.
  • L. A. Reznichenko et al., On the prospects for technical applications of BiFeO3, compounds substituted with rare-earth elements, Bull. Lebedev Phys. Inst. 37, 16 (2010). DOI: 10.3103/S1068335610010070.
  • E. G. Fesenko, The Perovskite Family and Ferroelectricity (Atomizdat, Moscow, 1972). [in Russian].
  • O. Dieguez et al., First-principles predictions of low-energy phases of multiferroic BiFeO3, Phys. Rev. B 83 (9), 094105 (2011). DOI: 10.1103/PhysRevB.83.094105.
  • A. Agbelele et al., Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3, Adv. Mater. 29 (9), 1602327 (2017). DOI: 10.1002/adma.201602327.
  • G. L. Yuan, and S. W. Or, Enhanced piezoelectric and pyroelectric effects in singlephase multiferroic Bi1−xNdxFeO3 x = 0–0.15 ceramics, Appl. Phys. Lett. 88 (6), 062905 (2006). DOI: 10.1063/1.2169905.
  • X. Qi et al., Greatly reduced leakage current and conduction mechanism in aliovalent-ion doped BiFeO3, Appl. Phys. Lett. 86 (6), 062903 (2005). DOI: 10.1063/1.1862336.
  • Z. Di et al., Nanopowder preparation and dielectric properties of a Bi2O3–Nb2O5 binary system prepared by the high-energy ball-milling method, J. Am. Ceram. Soc. 91, 139 (2008). DOI: 10.1111/J.1551-2916.2007.02017.X.
  • A. A. Gusev, I. P. Raevski, and V. P. Isupov, Formation of perovskite and pyrochlore phases during mechanochemical synthesis of lead ferroniobate, Inorg. Mater. 56 (9), 968 (2020). DOI: 10.1134/S0020168520090083.
  • S. Phapale et al., Standard enthalpy of formation and heat capacity of compounds in the pseudo-binary Bi2O3 – Fe2O3 system, J. Nuclear Mater. 373 (1–3), 137 (2008). DOI: 10.1016/j.jnucmat.2007.05.036.
  • T. T. Carvalho, and P. B. Tavares, Synthesis and thermodynamic stability of multiferroic BiFeO3, Mater. Lett. 62 (24), 3984 (2008). DOI: 10.1016/j.matlet.2008.05.051.
  • D. Khomskii, Classifying multiferroics. Mechanisms and effects, Physics 2, 20 (2009). DOI: 10.1103/Physics.2.20.
  • S. Matteppenevar et al., Composition dependent room temperature structure, electric and magnetic properties in magnetoelectric Pb(Fe1/2Nb1/2)O3-Pb(Fe2/3W1/3)O3 solid-solutions, J. Alloys Compd. 677, 27 (2016). DOI: 10.1016/j.jallcom.2016.03.260.
  • S. Matteppanavar, S. Rayaprol, and B. Angadi, Low-temperature neutron diffraction and magnetic studies on the magnetoelectric multiferroic Pb(Fe0.534Nb0.4W0.066)O3, J. Mater. Sci. 52 (18), 10709 (2017). DOI: 10.1007/s10853-017-1256-6.
  • S. Matteppanavar et al., Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb(Fe0.634W0.266Nb0.1)O3 ceramic, J. Supercond. Nov. Magn. 30 (5), 1317 (2017). DOI: 10.1007/s10948-016-3928-x.
  • V. A. Poluboyarov, Institute of Solid State Chemistry and Mechanochemistry SB RAS et al., Comparison of the efficiency of themills “AGO-2” and “Activator-2SL” at the mechanical activation of titanium powder, J. Sib. Fed. Univ. Eng. Technol. 10 (5), 646 (2017). DOI: 10.17516/1999-494X-2017-10-5-646-656.
  • C. N. R. Rao, and J. Gopalakrishnan, New Directions in Solid State Chemistry (Cambridge Univ. Press, Cambridge, 1986; Nauka, Novosibirsk, 1990). DOI: 10.1016/0022-4596(88)90043-6.
  • A. M. Abakumov et al., Antiferroelectric (Pb,Bi)1−xFe1+xO3−y perovskites modulated by crystallographic shear planes, Chem. Mater. 23 (2), 255 (2011). DOI: 10.1021/cm102907h.
  • V. I. Arharov, Mesoscopic Phenomena in Solid State and Their Microstructure. Problems of Modern Physics (Moscow, Nauka, 1980). [in Russian].
  • A. S. Khim, J. Wang, and X. Junmin, Phase stability and dielectric properties of (1 − x)PFW-xPZN derived from mechanical activation, Solid State Ion 127 (3–4), 285 (2000). DOI: 10.1016/S0167-2738(99)00280-5.
  • L. Mitoseriu et al., Structural study of Pb(Fe2/3W1/3)O3-PbTiO3 system, Mater. Lett. 57 (3), 609 (2002). DOI: 10.1016/S0167-577X(02)00839-X.
  • C. C. Wang, and S. X. Dou, Pseudo-relaxor behaviour induced by Maxwell-Wagner relaxation, Solid State Commun. 149 (45–46), 2017 (2009). DOI: 10.1016/j.ssc.2009.08.031.
  • H. Li et al., Evolution of relaxor behavior in multiferroic Pb(Fe2/3W1/3)O3-BiFeO3 solid solution of complex perovskite structure, J. Eur. Ceram. Soc. 41 (1), 310 (2021). DOI: 10.1016/j.jeurceramsoc.2020.07.068.
  • A. V. Pavlenko et al., Magnetodielectric effect in Bi1/2La1/2MnO3 ceramics, Tech. Phys. Lett. 39 (1), 78 (2013). DOI: 10.1134/S1063785013010215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.