68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dielectric properties and crystallite size distribution of modified lead-free sodium-bismuth titanate ceramics

ORCID Icon, , , , , & show all
Pages 73-82 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 15 Mar 2023

References

  • S. J. Zhang, R. Xia, and R. T. Shrout, Lead-free piezoelectric ceramics: Alternatives for PZT?, J. Electroceram. 19 (4), 251 (2007). DOI: 10.1007/s10832-007-9047-0.
  • T. Takenaka, H. Nagata, and Y. Hiruma, Current developments and prospective of lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 47 (5), 3787 (2008). DOI: 10.1143/JJAP.47.3787.
  • D. Damjanovic et al., What can be expected from lead-free piezoelectric materials?, Funct. Mater. Lett. 3, 5–13 (2010). DOI: 10.1142/S1793604710000919.
  • D. Xiao, Progresses and further considerations on the research of perovskite lead-free piezoelectric ceramics, J. Adv. Dielect. 1, 33–40 (2011). DOI: 10.1142/S2010135X11000045.
  • I. Coondoo, N. Panwar, and A. Kholkin, Lead-free piezoelectrics: Current status and perspective, J. Adv. Dielect. 03 (02), 1330002 (2013). DOI: 10.1142/S2010135X13300028.
  • P. Panda, and B. Sahoo, PZT to lead-free piezoceramics: A review, Ferroelectrics 474 (1), 128 (2015). DOI: 10.1080/00150193.2015.997146.
  • C. H. Hong et al., Lead-free piezoceramics. Where to move on? J. Materiomics 2, 1 (2016). DOI: 10.1016/j.jmat.2015.12.002.
  • J. Rodel, and J. Li, Lead-free piezoceramics: Status and perspectives, MRS Bull. 43 (8), 576 (2018). DOI: 10.1557/mrs.2018.181.
  • X. Zhou et al., Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics, Prog. Mat. Sci. 122, 100836 (2021). DOI: 10.1016/j.pmatsci.2021.100836.
  • J. Koruza, L. K. Venkataraman, and B. Malic, Lead-free perovskite ferroelectrics, in Magnetic, Ferroelectric, and Multiferroic Metal Oxides, Ed. B. D. Stojanovic, pp. 41–69. (Elsevier, 2018). DOI: 10.1016/B978-0-12-811180-2.00003-7.
  • G. A. Smolenskii et al., New ferroelectrics of complex composition, Fiz. Tverd. Tela 2, 2651 (1961). Corpus ID: 210517302.
  • S. B. Vakhrushev et al., Phase transitions and soft modes in sodium bismuth titanate, Ferroelectrics 63 (1), 153 (1985). DOI: 10.1080/00150198508221396.
  • K. Reichmann, A. Feteira, and M. Li, Bismuth sodium titanate based materials for piezoelectric actuators, Materials (Basel) 8 (12), 8467 (2015). DOI: 10.3390/ma8125469.
  • V. J. Vodyanoy, and Y. Mnyukh, The physical nature of “giant” magnetocaloric and electrocaloric effects, Am. J. Mat. Sci. 3, 105 (2013). DOI: 10.5923/j.materials.20130305.01.
  • F. Weyland et al., Critically: Concept to Enhance the piezoelectric and electrocaloric properties of ferroelectrics, Adv. Funct. Mater. 26 (40), 7326 (2016). DOI: 10.1002/adfm.201602368.
  • A. Kumar et al., Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics, J. Mater. Chem. C 7, 6836 (2019). DOI: 10.1039/C9TC01525F.
  • Y. Hiruma, H. Nagata, and T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions, J. Appl. Phys. 104 (12), 124106 (2008). DOI: 10.1063/1.3043588.[Database].
  • B. Parija et al., Ferroelectric and piezoelectric properties of (1-x)(Bi0.5Na0.5)TiO3 – xBaTiO3 ceramics, J. Mater. Sci.: Mater. Electron 24, 402 (2013). DOI: 10.1007/s10854-012-0764-z.
  • Y. S. Sung, and M. H. Kim, Effects of B-site donor and acceptor doping in Pb-free (Bi0.5Na0.5)TiO3 ceramics, in Technical Ferroelectrics, edited by I. Coondoo (INTECH, Croatia, 2010), pp. 217–230. DOI: 10.5772/13903.
  • V. V. Shvartsman, and D. C. Lupascu, Lead-free relaxor ferroelectrics, J. Am. Ceram. Soc. 95, 1 (2012). DOI: 10.1111/J.1551-2916.2011.04952.X.
  • A. R. Paterson et al., Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives, MRS Bull. 43 (8), 600 (2018). DOI: 10.1557/mrs.2018.156.
  • M. Li et al., The dramatic influence of A-site non-stoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3, Chem. Mater. 27 (2), 629 (2015). DOI: 10.1021/cm504475k.
  • I.-T. Seo, S. Steiner, and T. Frömling, The effect of A site non-stoichiometry on 0.94(NayBix)TiO3-0.06BaTiO3, J. Eur. Cer. Soc. 37 (4), 1429 (2017). DOI: 10.1016/j.jeurceramsoc.2016.11.045.
  • M. Mesrar et al., Effect of barium doping on electrical and electromechanical properties of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3, Mediterr. J.Chem. 8 (3), 198 (2019). DOI: 10.13171/10.13171/mjc8319050908mm.
  • W. Chen et al., Electromechanical properties and morphotropic phase boundary of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3 lead-free piezoelectric ceramics, J. Electroceram. 15 (3), 229 (2005). DOI: 10.1007/s10832-005-3301-0.
  • Y. Hiruma, H. Nagata, and T. Takenaka, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 45 (9B), 7409 (2006). DOI: 10.1143/JJAP.45.7409.
  • Y. Li et al., Phase structure and electrical properties of lead-free (1-2x)NBT–xKBT–xBT ceramics, J. Mater. Sci: Mater. Electron. 29 (9), 7851 (2018). DOI: 10.1007/s10854-018-8784-y.
  • E. D. Politova et al., Phase transitions, ferroelectric and relaxor properties of nonstoichiometric NBT ceramics, Ferroelectrics 538 (1), 120 (2019). DOI: 10.1080/00150193.2019.1569994.
  • E. D. Politova et al., Specific features of the structure and the dielectric properties of sodium-bismuth titanate-based ceramics, Phys. Solid State 60 (3), 428 (2018). DOI: 10.1134/S1063783418030265.
  • E. D. Politova et al., Physics and chemistry of creating new titanates with perovskite structure, Russ, J. Phys. Chem. A 92, 1132 (2018). DOI: 10.1134/S0036024418060146.
  • R. Louboutin, and D. Louër, Méthode directed correction des profils de raies de diffraction des rayons X. III. Sur la recherche de la solution optimale lors de la deconvolution, Acta Cryst. A 28 (5), 396 (1972). DOI: 10.1107/S056773947200107X.
  • A. L. Bail, and D. Louër, Smoothing and validity of crystallite-size distributions from X-ray line-profile analysis, J. Appl. Crystallogr. 11 (1), 50 (1978). DOI: 10.1107/S0021889878012662.
  • V. V. Zhurov, and S. A. Ivanov, PROFIT computer program for processing powder diffraction data on an IBM PC with a graphic user interface, Crystallogr. Rep. 42, 202 (1997).
  • P. Maltoni et al., Towards bi-magnetic nanocomposites as permanent magnets through the optimization of the synthesis and magnetic properties of SrFe12O19 nanocrystallites, J. Phys. D: Appl. Phys. 54 (12), 124004 (2021). DOI: 10.1088/1361-6463/abd20d.
  • W. Kleemann, Random-field induced antiferromagnetic, ferroelectric and structural domain states, Int. J. Mod. Phys. B 07 (13), 2469 (1993). DOI: 10.1142/S0217979293002912.
  • W. Cao et al., Large strain under low electric field in NBT-KBT-BT ceramics synthesized by sol-gel approach, J. Mater. Sci.: Mater. Electron 32, 9500 (2021). DOI: 10.1007/s10854-021-05613-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.