114
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Structural and physical properties of hydroxyapatite modified by Sr/Ca substitutions

ORCID Icon, , , &
Pages 117-128 | Received 24 Aug 2022, Accepted 12 Jan 2023, Published online: 15 Mar 2023

References

  • A. Camaioni et al., Hydroxyapatite (HAP) for Biomedical Applications (Woodhead, Cambridge, 2015).
  • V. S. Bystrov et al., Computational study of hydroxyapatite structures, properties and defects, J. Phys. D: Appl. Phys. 48, 195302 (2015). DOI: 10.1088/0022-3727/48/19/195302.
  • V. Bystrov et al., Simulation and computer study of structures and physical properties of hydroxyapatite with various defects, Nanomaterials 11, 2752 (2021). DOI: 10.3390/nano11102752.
  • M. Šupova, Substituted hydroxyapatites for biomedical applications: A review, Ceram. Int. 41, 9203 (2015). DOI: 10.1016/j.ceramint.2015.03.316.
  • C. Capuccini et al., Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells, J. Biomed. Mater. Res. A 89 (3), 594 (2009). DOI: 10.1002/jbm.a.31975.
  • N. V. Bulina, M. V. Chaikina, and I. Y. Prosanov, Mechanochemical synthesis of Sr-substituted hydroxyapatite, Inorg. Mater. 54, 820 (2018). DOI: 10.1134/S0020168518080034.
  • V. S. Bystrov et al., Structural and physical properties of Sr/Ca and Mg/Ca substituted hydroxyapatite: modeling and experiments, Ferroelectrics 590, 41 (2022). DOI: 10.1080/00150193.2022.2037937.
  • HyperChem. Tools for Molecular Modeling (Release 8) (Hypercube, Inc., Gainnesville, FL, 2011).
  • L. A. Avakyan et al., Optoelectronics and defect levels in hydroxyapatite by first-principles, J. Chem. Phys. 148 (15), 154706 (2018). DOI: 10.1063/1.5025329.
  • V. S. Bystrov et al., Piezoelectric, ferroelectric, and optoelectronic phenomena in hydroxyapatite with various defect levels, Ferroelectrics 559, 45 (2020). DOI: 10.1080/00150193.2020.1722005.
  • J. J. P. Stewart, Stewart Computational Chemistry. MOPAC2016 [Electronic resource] (Colorado Springs, CO, USA, 2016). Available online: http://openmopac.net/MOPAC2016.html (accessed on September 30, 2022).
  • Y. Dekhtyar et al., Engineering of the hydroxyapatite cell adhesion capacity, IFMBE Proc. 38, 182 (2013).
  • J. M. Hughes, M. Cameron, and K. D. Crowley, Structural variations in natural F, OH, and Cl apatites, Am. Mineral. 74, 870 (1989). http://rruff.geo.arizona.edu/AMS/minerals/Fluorapatite
  • V. S. Bystrov, Computational studies of the hydroxyapatite nanostructures, peculiarities and properties (a review,) Math. Biol. Bioinf. 12, 14 (2017). DOI: 10.17537/2017.12.14.
  • S. V. Dorozhkin, Hydroxyapatite and Other Calcium Orthophosphates: General Information and History (Nova Science Publishers, New York, 2017).
  • M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature (London). 204, 1050 (1964). DOI: 10.1038/2041050a0.
  • J. C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier, Amsterdam, 1994).
  • J. C. Elliot, P. E. Mackie, and R. A. Young, Monoclinic hydroxyapatite, Science 180 (4090), 1055 (1973). DOI: 10.1126/science.180.4090.1055.
  • J. Řezáč, and P. Hobza, Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods, J. Chem. Theory Comput. 8 (1), 141 (2012). DOI: 10.1021/ct200751e.
  • J. Řezáč, and P. Hobza, A halogen-bonding correction for the semiempirical PM6 method, Chem. Phys. Lett. 506, 286 (2011). DOI: 10.1016/j.cplett.2011.03.009.
  • G. Kresse, and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter. 54 (16), 11169 (1996). DOI: 10.1103/PhysRevB.54.11169.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118, 8207 (2003). DOI: 10.1063/1.1564060.
  • Quantum espresso. Available online: https://www.quantum-espresso.org/
  • V. S. Bystrov, Piezoelectricity in the ordered monoclinic hydroxyapatite, Ferroelectrics 475, 148 (2015). DOI: 10.1080/00150193.2015.995581.
  • V. S. Bystrov, Piezoelectricity and pyroelectricity in hydroxyapatite, Ferroelectrics 541, 25 (2019). DOI: 10.1080/00150193.2019.1574638.
  • S. Hu et al., Ferroelectric polarization of hydroxyapatite from density functional theory, RSC Adv. 7, 21375 (2017). DOI: 10.1039/c7ra01900a.
  • S. B. Lang et al., Pyroelectric, piezoelectric, and photoeffects in hydroxyapatite thin films on silicon, Appl. Phys. Lett. 98, 123703 (2011). DOI: 10.1063/1.3571294.
  • S. B. Lang et al., Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon, Sci. Rep. 3, 2215 (2013). DOI: 10.1038/srep02215.
  • S. B. Lang, Review of ferroelectric hydroxyapatite and its application to biomedicine, Ph. Transit. 89, 678 (2016). DOI: 10.1080/01411594.2016.1182166.
  • J. Vandiver et al., Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy, Biomaterials 26 (3), 271 (2005). DOI: 10.1016/j.biomaterials.2004.02.053.
  • S. Nakamura, H. Takeda, and K. Yamashita, Proton transport polarization and depolarization of hydroxyapatite ceramics, J. Appl. Phys. 89, 5386 (2001). DOI: 10.1063/1.1357783.
  • C. Halperin et al., Piezoelectric effect in human bones studied in nanometer scale, Nano Lett. 4, 1253 (2004). DOI: 10.1021/NL049453I.
  • A. Slepko, and A. A. Demkov, First-principles study of the biomineral hydroxyapatite, Phys. Rev. B Condens. Matter Mater. Phys. 84, 134108 (2011). DOI: 10.1103/PhysRevB.84.134108.
  • S. Weiner, and P. A. Price, Disaggregation of bone into crystals, Calcif. Tissue Int. 39 (6), 365 (1986). DOI: 10.1007/BF02555173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.