80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Additive-manufactured piezo-excited cantilever beams for liquid viscosity measurement with thickness optimization

, , &
Pages 1-12 | Received 11 Oct 2022, Accepted 13 Feb 2023, Published online: 25 Apr 2023

References

  • M. Brizard et al., Design of a high precision falling-ball viscometer, Rev. Sci. Instrum. 76 (2), 025109 (2005). DOI: 10.1063/1.1851471.
  • J. Doffin, R. Perrault, and G. Garnaud, Blood viscosity measurements in both extensional and shear flow by a falling ball viscometer, Biorheol. Suppl. 1 (s1), 89 (1984). DOI: 10.3233/bir-1984-23s114.
  • S. Ju et al., SC-Cut quartz resonators for dynamic liquid viscosity measurements, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 (12), 3616 (2021). DOI: 10.1109/TUFFC.2021.3096782.
  • Y. Lu, H. Ma, and Z. Li, Ultrasonic monitoring of the early-age hydration of mineral admixtures incorporated concrete using cement-based piezoelectric composite sensors, J. Intell. Mater. Syst. Struct. 26 (3), 280 (2015). DOI: 10.1177/1045389X14525488.
  • N. Wilkie-Chancellier et al., Lamb wave sensor for viscous fluids characterization, IEEE Sens. J. 9 (9), 1142 (2009). DOI: 10.1109/JSEN.2009.2027411.
  • R. Blaauwgeers et al., Quartz tuning fork: thermometer, pressure-and viscometer for helium liquids, J. Low Temp. Phys. 146 (5–6), 537 (2007). DOI: 10.1007/s10909-006-9279-4.
  • M. Heinisch et al., Resonant steel tuning forks for precise inline viscosity and mass density measurements in harsh environments, Proc. Eng. 87, 1139 (2014). DOI: 10.1016/j.proeng.2014.11.366.
  • S. Yenuganti, C. Zhang, and H. Zhang, Quartz crystal microbalance for viscosity measurement with temperature self-compensation, Mechatronics 59, 189 (2019). DOI: 10.1016/j.mechatronics.2019.04.005.
  • B. Yildirim et al., Surface acoustic wave viscosity sensor with integrated microfluidics on a PCB platform, IEEE Sens. J. 18 (6), 2305 (2018). DOI: 10.1109/JSEN.2018.2797546.
  • C. Zhang, H. Zhang, and S. Kaluvan, PZN-PT based smart probe for high temperature fluid viscosity measurements, Measurement 94, 753 (2016). DOI: 10.1016/j.measurement.2016.09.019.
  • C. Zhang et al., PMN-PT based smart sensing system for viscosity and density measurement, Measurement 101, 15 (2017). DOI: 10.1016/j.measurement.2017.01.017.
  • C. Zhang et al., Sensitivity analysis of piezo-driven stepped cantilever beams for simultaneous viscosity and density measurement, Smart Mater. Struct. 28 (6), 065012 (2019). DOI: 10.1088/1361-665X/ab1706.
  • C. A. Van Eysden, and J. E. Sader, Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope, J. Appl. Phys. 106 (9), 094904 (2009). DOI: 10.1063/1.3254191.
  • J. E. Sader, J. Lee, and S. R. Manalis, Energy dissipation in microfluidic beam resonators: Dependence on mode number, J. Appl. Phys. 108 (11), 114507 (2010). DOI: 10.1063/1.3514100.
  • J. E. Sader et al., Energy dissipation in microfluidic beam resonators: Effect of Poisson’s ratio, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84 (2), 026304 (2011). DOI: 10.1103/PhysRevE.84.026304.
  • C. Riesch et al., Characterizing vibrating cantilevers for liquid viscosity and density sensing, J. Sens. 2008, 1 (2008). DOI: 10.1155/2008/697062.
  • C. Riesch et al., A suspended plate viscosity sensor featuring in-plane vibration and piezoresistive readout, J. Micromech. Microeng. 19 (7), 075010 (2009). DOI: 10.1088/0960-1317/19/7/075010.
  • T. L. Wilson, G. A. Campbell, and R. Mutharasan, Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors, Sens. Actuators, A 138 (1), 44 (2007). DOI: 10.1016/j.sna.2007.04.050.
  • D. Kim et al., Determination of fluid density and viscosity by analyzing flexural wave propagations on the vibrating micro-cantilever, Sensors 17 (11), 2466 (2017). DOI: 10.3390/s17112466.
  • O. Cakmak et al., Microcantilever based disposable viscosity sensor for serum and blood plasma measurements, Methods 63 (3), 225 (2013). DOI: 10.1016/j.ymeth.2013.07.009.
  • I. Dufour et al., The microcantilever: A versatile tool for measuring the rheological properties of complex fluids, J. Sens. 2012, 1 (2012). DOI: 10.1155/2012/719898.
  • C. Vančura et al., Analysis of resonating microcantilevers operating in a viscous liquid environment, Sens. Actuators, A 141 (1), 43 (2008). DOI: 10.1016/j.sna.2007.07.010.
  • A. Hossain, A. Mishty, and A. Mian, Numerical analysis for design optimization of microcantilever beams for measuring rheological properties of viscous fluid, Finite Elem. Anal. Des. 68, 1 (2013). DOI: 10.1016/j.finel.2013.01.002.
  • C. Bergaud, and L. Nicu, Viscosity measurements based on experimental investigations of composite cantilever beam eigenfrequencies in viscous media, Rev. Sci. Instrum. 71 (6), 2487 (2000). DOI: 10.1063/1.1150640.
  • S. Kaluvan et al., Determination of temperature-dependent Young’s modulus of bulk metallic glass, Int. J. Microstruct. Mater. Prop. 14 (4), 374 (2019). DOI: 10.1504/IJMMP.2019.101802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.