101
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study of the rare earth-based perovskite NdInO3: DFT approach

, , &
Pages 113-121 | Received 06 Nov 2022, Accepted 02 Mar 2023, Published online: 25 Apr 2023

References

  • S. Idrissi et al., Structural, electronic and magnetic properties of the rare earth-based solar perovskites: GdAlO3, DyAlO3 and HoAlO3, J. Supercond. Nov. Magn. 34 (9), 2371 (2021). DOI: 10.1007/s10948-021-05900-3.
  • S. A. Wolf et al., Spintronics: a spin-based electronics vision for the future, Science 294 (5546), 1488 (2001). DOI: 10.1126/science.1065389.
  • H. Ullah et al., First principle study of CsSrM3 (M = F, Cl), Physica B 414, 91 (2013). DOI: 10.1016/j.physb.2013.01.009.
  • H. Ullah et al., Structural, chemical bonding, electronic and magnetic properties of KMF3 (M = Mn, Fe Co, Ni) compounds, Comput. Mater. Sci. 85, 402 (2014). DOI: 10.1016/j.commatsci.2013.12.054.
  • H. Ullah et al., Structural, elastic, electronic and optical properties of CsMCl3 (M = Zn, Cd), Phys. B 420, 15 (2013). DOI: 10.1016/j.physb.2013.03.011.
  • A. Guzik et al., Magnetic properties of manganese doped PrAlO3 monocrystalline fibres, Mater. Sci. Poland 32 (4), 633 (2014). DOI: 10.2478/s13536-014-0240-y.
  • B. Sabir et al., First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3 (Y = Cr, V) perovskites, Curr. Appl. Phys. 17 (11), 1539 (2017). DOI: 10.1016/j.cap.2017.07.010.
  • I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76 (2), 323 (2004). DOI: 10.1103/RevModPhys.76.323.
  • R. A. de Groot et al., New class of materials: half-metallic ferromagnets, Phys. Rev. Lett 50 (25), 2024 (1983). DOI: 10.1103/PhysRevLett.50.2024.
  • Liu B-G, Phys. Rev. B, 67, 172411 (2003); Xie W-H, Xu Y-Q, Liu B-G and Pettifor D G, Phys. Rev. Lett., 91, 037204 (2003); Liu B-G, Lecture NotesPhys., 676, 267 (2005). DOI: 10.1103/PhysRevB.67.172411.
  • J. K. Furdyna, Diluted magnetic semiconductors, J. Appl. Phys. 64 (4), R29 (1988). DOI: 10.1063/1.341700.
  • H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281 (5379), 951 (1998). DOI: 10.1126/science.281.5379.951.
  • S. Idrissi et al., A DFT study of the equiatomic quaternary Heusler alloys ZnCdXMn (X = Pd, Ni or Pt), Solid State Commun. 331, 114292 (2021). DOI: 10.1016/j.ssc.2021.114292.
  • S. Idrissi et al., The critical magnetic behavior of the new Heusler CoXO2 alloys (X = Cu or Mn): Monte Carlo Study, Chin. J. Phys. 70, 312 (2021). DOI: 10.1016/j.cjph.2021.01.008.
  • S. Idrissi et al., Half-metallicity and magnetism in the full Heusler alloy Fe2MnSn with L21 and XA stability ordering phases, J Low Temp Phys 202 (3-4), 343 (2021). DOI: 10.1007/s10909-021-02562-2.
  • S. Idrissi et al., A Monte Carlo study of the Yttrium based Heusler alloys Y2CrGa and YFeCrGa, J. MMMS 17 (3), 552 (2021). DOI: 10.1108/MMMS-09-2020-0221.
  • S. Idrissi et al., Characterization of the equiatomic quaternary Heusler alloy ZnCdRhMn: structural, electronic, and magnetic properties, J. Supercond. Nov. Magn. 33 (10), 3087 (2020). DOI: 10.1007/s10948-020-05561-8.
  • S. Idrissi et al., Structural, electronic, magnetic properties and critical behavior of the equiatomic quaternary Heusler alloy CoFeTiSn, Phys. Lett. A 384 (24), 126453 (2020). DOI: 10.1016/j.physleta.2020.126453.
  • M. E. A. Monir et al., Study of structural, electronic, and magnetic properties of cubic lanthanide based on oxide perovskite-type NdGaO3, J. Supercond. Nov. Magn. 32 (7), 2149 (2019). DOI: 10.1007/s10948-018-4938-7.
  • T. Usman et al., GGA and GGA + U study of rare earth-based perovskites in cubic phase, J. Supercond. Nov. Magn. 30 (6), 1389 (2017). DOI: 10.1007/s10948-016-3953-9.
  • M. K. Butt et al., A DFT study of structural, magnetic, elastic and optoelectronic properties of lanthanide based XAlO3 (X = Nd, Gd) compounds, J. Mater. Res. Technol. 9 (6), 16488 (2020). DOI: 10.1016/j.jmrt.2020.11.055.
  • K. I. Kobayashi et al., Room-temperature, magneto-resistance in an oxide material with an ordered double-perovskite structure, Nature 395 (6703), 677 (1998). DOI: 10.1038/27167.
  • R. Terki et al., Full potential calculation of structural, elastic and electronic properties of BaZrO3 and SrZrO3, Phys. Stat. Sol. (B) 242 (5), 1054 (2005). DOI: 10.1002/pssb.200402142.
  • B. L. Chamberland, and C. W. Moeller, A study on the PbCrO3 perovskite, J. Solid State Chem. 5 (1), 39 (1972). DOI: 10.1016/0022-4596(72)90006-0.
  • K. Oka et al., Pressure-induced spin-state transition in BiCoO3, J. Am. Chem. Soc. 132 (27), 9438 (2010). DOI: 10.1021/ja102987d.
  • A. A. Belik et al., Crystallographic features and tetragonal phase stability of PbVO3, a new member of PbTiO3 family, Chem. Mater. 17 (2), 269 (2005). DOI: 10.1021/cm048387i.
  • ΜL. Boucher, and D. Ε. Peacor, The crystal structure of alamosite, PbSiO3, Zeit. Kristallogr. Crystal. Mater. 126 (1-6), 98 (1968). DOI: 10.1524/zkri.1968.126.16.98.
  • D. S. Kan et al., Blue-light emission at room temperature from Ar+-irradiated SrTiO3, Nature Mater. 4 (11), 816 (2005). DOI: 10.1038/nmat1498.
  • H. T. Chen, P. Raghunath, and M. C. Lin, Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells, Langmuir 27 (11), 6787 (2011). DOI: 10.1021/la200193a.
  • Z. Ali, and I. Ahmad, Band profile comparison of the cubic perovskites CaCoO3 and SrCoO3, J. Elec. Mater. 42 (3), 438 (2013). DOI: 10.1007/s11664-012-2377-y.
  • C. L. Huang, and M. H. Weng, Improved high q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature, Mater. Res. Bull. 36 (15), 2741 (2001). DOI: 10.1016/S0025-5408(01)00752-8.
  • J. Dailly et al., Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells, Electrochim. Acta 55 (20), 5847 (2010). DOI: 10.1016/j.electacta.2010.05.034.
  • X. Li et al., Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells, Int. J. Hydrogen Energy 35 (15), 7913 (2010). DOI: 10.1016/j.ijhydene.2010.05.043.
  • Z. Chao et al., Structural and electronic properties of Fe-doped BaTiO3 and SrTiO3, Chinese Phys. 16 (5), 1422 (2007). DOI: 10.1088/1009-1963/16/5/042.
  • J. A. Rodriguez et al., Structural and electronic properties of PbTiO3, PbZrO3, and PbZr0.5Ti0.5O3: First-principles density-functional studies, J. Chem. Phys. 117 (6), 2699 (2002). DOI: 10.1063/1.1490343.
  • A. Watras, R. Pązik, and P. J. Dereń, Optical properties of Ce3+ doped ABO3 perovskites (A = La, Gd, Y and B = Al, Ga, Sc), J. Lumin. 133, 35 (2013). DOI: 10.1016/j.jlumin.2011.12.031.
  • K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics, 6 (12), 809–817 (2012).
  • M. E. A. Monir, Half-metallic ferromagnetism in cubic perovskite type NdInO3, Philos. Mag. 100 (19), 2524 (2020). DOI: 10.1080/14786435.2020.1778203.
  • P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B), B864 (1964). DOI: 10.1103/PhysRev.136.B864.
  • P. Giannouzzi et al., J. Phys.: Condens. Matter. 21, 395502 2009. http://www.Quantum-espresso.org
  • D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43 (20), 1494 (1979). DOI: 10.1103/PhysRevLett.43.1494.
  • J. P. Perdew et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B Condens. Matter. 46 (11), 6671 (1992). DOI: 10.1103/physrevb.46.6671.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12), 5188 (1976). DOI: 10.1103/PhysRevB.13.5188.
  • J. D. Head, and M. C. Zerner, A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries, Chem. Phys. Lett. 122 (3), 264 (1985). DOI: 10.1016/0009-2614(85)80574-1.
  • F. S. Galasso, Perovskites and High Tc Superconductors (Gordon and Breach, New York, 1990).
  • Z. Wang, and Z. C. Kang, Functional and Smart Materials: Structural Evolution and Structure Analysis (Springer Science & Business Media, 2012).
  • C. Chen et al., New nonlinear-optical crystal: LiB3O5. JOSA B, 6 (4), 616–621 (1989).
  • I. Plaza et al., Neutron diffraction study of the magnetic ordered Nd3+ in NdCoO3 and NdlnO3 below 1 K, Physica B 234, 632 (1997).
  • K. Momma, and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (6), 1272 (2011). DOI: 10.1107/S0021889811038970.
  • M. K. Butt et al., First principle insight into the structural, optoelectronic, half metallic, and mechanical properties of cubic perovskite NdInO3, Arab. J. Sci. Eng. 45 (6), 4967 (2020). DOI: 10.1007/s13369-020-04576-6.
  • R. L. Moreira, and A. Dias, Comment on “prediction of lattice constant in cubic perovskites, J. Phys. Chem. Solids 68 (8), 1617 (2007). DOI: 10.1016/j.jpcs.2007.03.050.
  • K. Yang et al., High-throughput design of two-dimensional electron gas systems based on polar/nonpolar perovskite oxide heterostructures, Sci. Rep. 6 (1), 34667 (2016). DOI: 10.1038/srep34667.
  • S. A. Dar et al., Ab Initio investigation on electronic, magnetic, mechanical, and thermodynamic properties of AMO3 (A = Eu, M = Ga, In) perovskites, J. Supercond. Nov. Magn. 31 (5), 1549 (2018). DOI: 10.1007/s10948-017-4365-1.
  • G. A. Geguzina, and V. P. Sakhnenko, Correlation between the lattice parameters of crystals with perovskite structure, Crystallogr. Rep. 49 (1), 15 (2004). DOI: 10.1134/1.1643959.
  • A. S. Verma, and V. K. Jindal, Lattice constant of cubic perovskites, J. Alloys Compd. 485 (1-2), 514 (2009). DOI: 10.1016/j.jallcom.2009.06.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.