107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of multi-step zig-zag shaped piezoelectric energy harvesters for powering fetal heart rate monitoring system

&
Pages 122-145 | Received 25 Dec 2022, Accepted 01 Mar 2023, Published online: 25 Apr 2023

References

  • B. Amar, A. B. Kouki, and H. Cao, Power approaches for implantable medical devices, Sens. (Basel). 15 (11), 28889 (2015). DOI: 10.3390/s151128889.
  • K. Jakub et al., A low-cost device for fetal heart rate measurement, IFAC-Pap. 51, 426 (2018). DOI: 10.1016/j.ifacol.2018.07.116.
  • A. Amon and F. Alesch, Systems for deep brain stimulation: Review of technical features, J. Neural Transm. (Vienna). 124 (9), 1083 (2017). DOI: 10.1007/s00702-017-1751-6.
  • P. Mangaiyarkarasi, P. Lakshmi, and V. Sasrika, Design of piezoelectric energy harvesting structures using ceramic and polymer materials, J. Mech. Sci. Technol. 35 (4), 1407 (2021). DOI: 10.1007/s12206-021-0307-8.
  • P. Mangaiyarkarasi and P. Lakshmi, Modeling of Piezoelectric Energy Harvester for Medical Applications Using Intelligent Optimization Techniques, Mechanism and Machine Science. Lecture Notes in Mechanical Engineering (Singapore, Springer, 2021), pp. 195–212. DOI: 10.1007/978-981-15-4477-4_14.
  • P. Mangaiyarkarasi, P. Lakshmi, and V. Sasrika, Grey wolf optimization based flexible piezoelectric energy harvester for hearing aid applications, IEEE-SysCon. 1 (2019). DOI: 10.1109/SYSCON.2019.8836873.
  • H. S. Kim, J. H. Kim, and J. Kim, A review of piezoelectric energy harvesting based on vibration, Int. J. Precis. Eng. Manuf. 12 (6), 1129 (2011). DOI: 10.1007/s12541-011-0151-3.
  • H. A. Sodano, G. Park, and D. J. Inman, Generation and storage of electricity from power harvesting devices, J. Intell. Mater. Syst. Struct. 16 (1), 67 (2005). DOI: 10.1177/1045389X05047210.
  • S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Comput. Commun. 26 (11), 1131 (2003). DOI: 10.1016/S0140-3664(02)00248-7.
  • A. C. Galbier and M. A. Karami, A bistable piezoelectric energy harvester with an elastic magnifier for applications in medical pacemakers, ASME SMASIS. (2016). DOI: 10.1115/SMASIS2016-9192.
  • A. Kim et al., New and emerging energy sources for implantable wireless microdevices, IEEE Access. 3, 89 (2015). DOI: 10.1109/ACCESS.2015.2406292.
  • G. C. Martins, P. R. Nunes, and J. A. Cordioli, On the optimization of a piezoelectric speaker for hearing aid application through multi-physical FE models, Int. Eng. Optim. (2014). DOI: 10.1201/b17488-57.
  • S. Sunithamani and P. Lakshmi, Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio, Microsyst. Technol. 21 (4), 733 (2015). DOI: 10.1007/s00542-014-2226-4.
  • P. Mangaiyarkarasi, P. Lakshmi, and V. Sasrika, Enhancement of vibration based piezoelectric energy harvester using hybrid optimization techniques, Microsyst. Technol. 25 (10), 3791 (2019). DOI: 10.1007/s00542-018-04291-1.
  • S. Sunithamani and P. Lakshmi, Experimental study and analysis of unimorph piezoelectric energy harvester with different substrate thickness and different proof mass shapes, Microsyst. Technol. 23 (7), 2421 (2017). DOI: 10.1007/s00542-016-2917-0.
  • P. Mangaiyarkarasi and P. Lakshmi, Numerical and experimental analysis of piezoelectric vibration energy harvester in IoT based F-SEPS application using optimization techniques, Microsyst. Technol. 27 (8), 2955 (2021). DOI: 10.1007/s00542-020-05169-x.
  • S. Nabavi and L. Zhang, Curve-shaped anchor for durability and efficiency improvement of piezoelectric MEMS energy harvesters, IEEE Sens. Conference. 1 (2018). DOI: 10.1109/ICSENS.2018.8589817.
  • S. Nabavi and L. Zhang, Design and optimization of a low-resonant-frequency piezoelectric MEMS energy harvester based on artificial intelligence, Eurosensors Conference. 930 (2018). DOI: 10.3390/proceedings2130930.
  • J. Q. Liu et al., A MEMS-based piezoelectric power generator array for vibration energy harvesting, Microelectron. J. 39 (5), 802 (2008). DOI: 10.1016/j.mejo.2007.12.017.
  • M. Rezaeisaray et al., Low frequency piezoelectric energy harvesting at multi vibration mode shapes, Sens. Actuators A Phys. 228, 104 (2015). DOI: 10.1016/j.sna.2015.02.036.
  • S. Nabavi and L. Zhang, Nonlinear multi-mode wideband piezoelectric MEMS vibration energy harvester, IEEE Sens. J. 19 (13), 4837 (2019). DOI: 10.1109/JSEN.2019.2904025.
  • L. Qingqing et al., A novel composite multi-layer piezoelectric energy harvester, Compos. Struct. 201, 121 (2018). DOI: 10.1016/j.compstruct.2018.06.024.
  • U. Ramalingam et al., A novel piezoelectric energy harvester using a multi-stepped beam with rectangular cavities, Appl. Sci. 8 (11), 2091 (2018). DOI: 10.3390/app8112091.
  • S. Rammohan et al., Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations, IEEE Sens. J. 15 (6), 3338 (2015). DOI: 10.1109/JSEN.2014.2387882.
  • J. Arunguvai and P. Lakshmi, Flexible nano-vibration energy harvester using three-phase polymer composites, J. Mater. Sci: Mater. Electron. 31 (11), 8283 (2020). DOI: 10.1007/s10854-020-03363-1.
  • M. A. Dubois and M. Paul, Properties of AlN thin films for piezoelectric transducers and microwave filter applications, Appl. Phys. Lett. 74 (20), 3032 (1999). DOI: 10.1063/1.124055.
  • M. A. Ahma and P. Robert, Piezoelectric coefficients of thin film aluminum nitride characterizations using capacitance measurements, IEEE Microw. Wirel. Compon. Lett. 19, 140 (2009). DOI: 10.1109/LMWC.2009.2013682.
  • C. Arnon, Dielectric and piezoelectric properties of PZT–silica fume cement composites, Curr. Appl. Phys. 7, 532 (2007). DOI: 10.1016/j.cap.2006.10.016.
  • D. Isarakorn et al., Epitaxial piezoelectric MEMS on silicon, J. Micromech. Microeng. 20 (5), 055008 (2010). DOI: 10.1088/0960-1317/20/5/055008.
  • P. Mangaiyarkarasi and P. Lakshmi, Multi-objective optimization of single-layer and multi-layer piezoelectric energy harvester under non-linear multi-mode operation using genetic algorithm, Mater. Today: Proc. 44, 4209 (2021). DOI: 10.1016/j.matpr.2020.10.534.
  • S. D. Senturia, Microsystem Design (New York, Springer Science & Business Media, 2007). DOI: 10.1007/b117574.
  • W. Zhang, R. Baskaran, and K. L. Turner, Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor, Sens. Actuators A Phys. 102 (1–2), 139 (2002). DOI: 10.1016/S0924-4247(02)00299-6.
  • S. Sunithamani, P. Lakshmi, and E. E. Flora, PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: Simulation study, Microsyst. Technol. 20 (12), 2165 (2014). DOI: 10.1007/s00542-013-1920-y.
  • P. Mangaiyarkarasi and P. Lakshmi, Effect of various shapes of single proof mass and multiple proof masses on piezoelectric energy harvester for powering mobile phone devices, Ferroelect. 577 (1), 105 (2021). DOI: 10.1080/00150193.2021.1916355.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.