64
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Luminescence study of samarium-doped Ca2KZn2(VO4)3 phosphor as a potential candidate for lighting and display device applications

&
Pages 175-186 | Received 25 Dec 2022, Accepted 03 Mar 2023, Published online: 25 Apr 2023

References

  • H. P. Dang et al., Utilizing CaCO3, CaF2, SiO2, and TiO2 phosphors as approaches to the improved color uniformity and lumen efficacy of WLEDs, Telkomnika (Telecommunication Comput. Electron. Control 19, 623 (2021). DOI: 10.12928/TELKOMNIKA.v19i2.16357.
  • G. Annadurai et al., Synthesis, structural and photoluminescence properties of novel orange-red emitting Ba3Y2B6O15:Eu3+ phosphors, J. Lumin. 208, 75 (2019). DOI: 10.1016/j.jlumin.2018.12.028.
  • M. Peng et al., Site occupancy preference, enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25: Mn4+ for warm WLEDs, Chem. Mater. 27, 2938 (2015). DOI: 10.1021/acs.chemmater.5b00226.
  • C. M. Mehare et al., Tailoring the luminescent properties of Ca9La(PO4)5(SiO4)F2:1 mol%Eu3+ phosphor via doping of chloride, molybdate, vanadate, sulfate, and tungstate ions, J. Mater. Sci. Mater. Electron 31, 3426 (2020). DOI: 10.1007/S10854-020-02891-0/FIGURES/18.
  • Y. R. Parauha, and S. J. Dhoble, Synthesis and luminescence characterization of Eu3+-doped Ca7Mg2(PO4)6 phosphor for eco-friendly white light-emitting diodes and thermoluminescence dosimetric applications, Luminescence 36, 1837 (2020). DOI: 10.1002/BIO.3900.
  • T. Gao et al., Garnet phosphors for white-light-emitting diodes: modification and calculation, Dalt, Trans 50, 3769 (2021). DOI: 10.1039/d0dt04368k.
  • P. Dang et al., Highly efficient cyan-green emission in self-activated Rb3RV2O8 (R = Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs), Inorg. Chem. 59, 6026 (2020). DOI: 10.1021/acs.inorgchem.0c00015.
  • I. Charak et al., Structural and spectral studies of highly pure red-emitting Ca3B2O6:Eu3+ phosphors for white light emitting diodes, J. Alloys Compd. 869, 159363 (2021). DOI: 10.1016/j.jallcom.2021.159363.
  • M. Rajendran et al., A novel self-activated (bluish-green) and Eu3+ doped (red) phosphors for warm white LEDs, J. Alloys Compd. 815, 152631 (2020). DOI: 10.1016/j.jallcom.2019.152631.
  • S. K. Hussain et al., UV excitation band induced novel Na3Gd(VO4)2:RE3+ (RE3+ = Eu3+ or Dy3+ or Sm3+) double vanadate phosphors for solid-state lightning applications, J. Alloys Compd. 739, 218 (2018). DOI: 10.1016/j.jallcom.2017.12.200.
  • M. A. GómezTorres et al., Pure and RE3+-doped La7O6(VO4)3 (RE = Eu, Sm): polymorphism stability and luminescence properties of a new oxyvanadate matrix, Inorg. Chem. 59, 5929 (2020). DOI: 10.1021/acs.inorgchem.9b03689.
  • L. Li et al., NaBaLa2(PO4)3: A novel host lattice for Sm3+-doped phosphor materials emitting reddish-orange light, J. Alloys Compd. 701, 515 (2017). DOI: 10.1016/j.jallcom.2017.01.171.
  • L. Li et al., Near-ultraviolet and blue light excited Sm3+ doped Lu2MoO6 phosphor for potential solid state lighting and temperature sensing, J. Alloys Compd. 738, 473 (2018). DOI: 10.1016/j.jallcom.2017.12.169.
  • W. Xia et al., Realizing dual-mode luminescent thermometry with excellent sensing sensitivity in single-phase samarium (III)-doped antimonite phosphors, J. Alloys Compd 917, 165435 (2022). DOI: 10.1016/j.jallcom.2022.165435.
  • Y. V. Baklanova et al., Novel orange-red-emitting Li5+xCaxLa3-xTa2O12:Sm3+ (x = 0; 1) phosphors: crystal structure, luminescence and thermal quenching studies, J. Lumin. 224, 117315 (2020). DOI: 10.1016/j.jlumin.2020.117315.
  • H. Kaur, and M. Jayasimhadri, Optimization of structural and luminescent properties with intense red emitting thermally stable Sm3+ doped CaBiVO5 phosphors for w-LED applications, Opt. Mater. (Amst) 107, 110119 (2020). DOI: 10.1016/j.optmat.2020.110119.
  • C. Dou et al., Tuning the color emission of Gd(PxV1 − x)O4:Sm3+ phosphors via changing PO43−/VO43− proportion, J Mater Sci. Mater. Electron 31 (5), 3934 (2020). DOI: 10.1007/S10854-020-02941-7/FIGURES/13.
  • R. Cao et al., A single-phase NaCa2 Mg2V3 O12 :Sm 3+ phosphor: synthesis, energy transfer, and luminescence properties, J. Lumin. 212, 23 (2019). DOI: 10.1016/j.jlumin.2019.04.017.
  • L. K. Bharat et al., Rare-earth free self-luminescent Ca2 KZn2 (VO4)3 phosphors for intense white light-emitting diodes, Sci. Rep. 7 (1), 1 (2017). DOI: 10.1038/srep42348.
  • J. Zhou et al., Synthesis, energy transfer mechanism, and tunable emissions of novel Na3La(VO4)2:Re3+ (Re3+ = Dy3+, Eu3+, and Sm3+) vanadate phosphors for near-UV-excited white LEDs, Ceram. Int 46 (5), 6276 (2020). DOI: 10.1016/j.ceramint.2019.11.098.
  • M. S. Rabasovic et al., Orange-reddish light emitting phosphor GdVO4:Sm3+ prepared by solution combustion synthesis, J. Spectrosc. 2018, 1 (2018). DOI: 10.1155/2018/3413864.
  • L. Yang et al., Tunable luminescence and energy transfer properties in Ca2NaMg2V3O12: Ln3+ (Dy3+, Sm3+) phosphors, J. Alloys Compd. 787, 815 (2019). DOI: 10.1016/j.jallcom.2019.02.100.
  • V. Singh et al., Sm3+ doped calcium orthovanadate Ca3 (VO4)2 - A spectral study, Spectrochim. Acta - Part A Mol, Biomol. Spectrosc. 217, 315 (2019). DOI: 10.1016/j.saa.2019.03.041.
  • R. Singh, and S. J. Dhoble, Dy3+-activated NaM4 (VO4)3 (M = Ca, Ba, Sr) phosphor for near-UV solid-state lighting, Luminescence 26 (6), 728 (2011). DOI: 10.1002/bio.1305.
  • C. M. Mehare et al., Improvement of self-activated luminescence properties of Ca2KZn2(Vo4)3 down-conversion materials by Ssr method based on Co-doped Eu3+, Dy3+ rare earth ions concentrations, SSRN Electron. J. 2, 1 (2022). DOI: 10.2139/ssrn.4013508.
  • P. Sharma, P., and Singh, Kamni, Spectroscopic and microscopic properties of KSrVO4: Mn2+ synthesized by low-cost combustion method, Phys. B Condens. Matter. 602, 412500 (2021). DOI: 10.1016/j.physb.2020.412500.
  • Y. Lv et al., In-doped LiCa2.98MgV3O12 rare-earth-free phosphor with a high photoluminescence quantum yield of 67.4%, J. Am. Ceram. Soc. 104 (11), 5837 (2021). DOI: 10.1111/jace.17985.
  • L. Yang et al., Tunable luminescence and energy transfer properties in Ca2−xNaMg2V3O12:xEu3+ phosphors, J. Mater. Sci. Mater. Electron. 28 (14), 9975 (2017). DOI: 10.1007/s10854-017-6779-8.
  • D. G. Mohan, and S. Gopi, Induction assisted friction stir welding: a review, Aust. J. Mech. Eng. 18 (1), 119 (2018). DOI: 10.1080/14484846.2018.1432089.
  • A. DukeJohn David et al., Synthesis and photoluminescence properties of Sm3+ substituted glaserite-type orthovanadates K3Y[VO4]2 with monoclinic structure, J. Lumin. 177, 104 (2016). DOI: 10.1016/j.jlumin.2016.04.025.
  • L. Ann Jacob et al., Synthesis, structural and luminescence characterization of single phased Tm3+/Dy3+ co-doped Na3Y(VO4)2 nanocrystals, J. Cryst. Growth 555, 125957 (2021). DOI: 10.1016/j.jcrysgro.2020.125957.
  • H. Guo et al., A novel Sm3+ singly doped LiCa3ZnV3O12 phosphor: a potential luminescent material for multifunctional applications, RSC Adv. 8 (58), 33403 (2018). DOI: 10.1039/C8RA07329E.
  • Z. Zhang et al., Preparation and luminescence properties of Ba9Y2Si6O24: Sm3+ phosphors with excellent thermal stability for solid-state lightning, Appl. Phys. A Mater. Sci. Process 127, 2 (2021). DOI: 10.1007/s00339-021-04473-1.
  • V. Singh et al., On the green emission of holmium (III) doped LaVO4 phosphors, Optik (Stuttg) 242, 167223 (2021). DOI: 10.1016/j.ijleo.2021.167223.
  • M. Dalal et al., Energy transfer and photoluminescent analysis of a novel color-tunable Ba2Y1-xV3O11:xSm3+ nanophosphor for single-phased phosphor-converted white LEDs, Ceram. Int. 44 (9), 10531 (2018). DOI: 10.1016/j.ceramint.2018.03.073.
  • P. Pookmanee et al., Preparation and characterization of BiVO4 powder by the sol-gel method, Ferroelectrics 456 (1), 45 (2013). DOI: 10.1080/00150193.2013.846197.
  • M. Dalal et al., A promising novel orange-red emitting SrZnV2O7:Sm3+ nanophosphor for phosphor-converted white LEDs with near-ultraviolet excitation, J. Phys. Chem. Solids 89, 45 (2016). DOI: 10.1016/j.jpcs.2015.10.017.
  • P. Biswas et al., Potential of Sm3+ doped LiSrVO4 nanophosphor to fill amber gap in LEDs, Phys. B Condens. Matter. 535, 221 (2018). DOI: 10.1016/j.physb.2017.07.040.
  • Y. Jia et al., Synthesis and luminescence properties of novel SrScLiTeO6:Ln (Ln = Eu3+, Sm3+) phosphors for white LED applications, Appl. Phys. A 126 (11), 1 (2020). DOI: 10.1007/s00339-020-04031-1.
  • S. Sailaja et al., Synthesis and photoluminescence properties of Sm3+ and Dy3+ ions activated Ca2Gd2W3O14 phosphors, J. Mol. Struct. 1003 (1-3), 115 (2011). DOI: 10.1016/j.molstruc.2011.07.048.
  • Q. Tang et al., Luminescence enhancement of Ca3Sr3(VO4)4:Eu3+, Sm3+ red-emitting phosphor by charge compensation, Opt. Mater. (Amst) 75, 258 (2018). DOI: 10.1016/j.optmat.2017.10.040.
  • S. Singh et al., Crystal structure and photoluminescence investigations of Y3Al5O12:Dy3+ nanocrystalline phosphors for WLEDs, Chem. Phys. Lett. 765, 138300 (2021). DOI: 10.1016/j.cplett.2020.138300.
  • M. Shokouhimehr and S.M. Rafiaei, Combustion synthesized YVO4:Eu3+ phosphors: Effect of fuels on nanostructure and luminescence properties, Ceram. Int. 43, 11469 (2017). DOI: 10.1016/j.ceramint.2017.05.273.
  • A. Yamuna et al., Facile synthesis of single-crystalline Fe-doped copper vanadate nanoparticles for the voltammetric monitoring of lethal hazardous fungicide carbendazim, Microchim. Acta 188 (8), 4941 (2021). DOI: 10.1007/s00604-021-04941-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.