92
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigations on weld joints of 7075 alloy with Al–5Mg–1Zn composite fillers by arc welding

, , , , ORCID Icon & ORCID Icon
Pages 16-32 | Received 21 Jun 2022, Accepted 27 Mar 2023, Published online: 25 May 2023

References

  • A. Azarniya et al., Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective, J. Alloys Compd. 781, 945 (2019). DOI: 10.1016/j.jallcom.2018.11.286.
  • P. Garg et al., Advance research progresses in aluminium matrix composites: manufacturing & applications, J. Mater. Res. Technol. 8 (5), 4924 (2019). DOI: 10.1016/j.jmrt.2019.06.028.
  • E. Georgantzia et al., Aluminium alloys as structural material: a review of research, Eng. Struct. 227, 111372 (2021). DOI: 10.1016/j.engstruct.2020.111372.
  • J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China 24 (7), 1995 (2014). DOI: 10.1016/S1003-6326(14)63305-7.
  • P. Samal et al., Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties, J. Manuf. Process. 59, 131 (2020). DOI: 10.1016/j.jmapro.2020.09.010.
  • X. Zhang et al., Recent advances in the development of aerospace materials, Prog. Aerosp. Sci. 97, 22 (2018). DOI: 10.1016/j.paerosci.2018.01.001.
  • T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. (1980–2015) 56, 862 (2014). DOI: 10.1016/j.matdes.2013.12.002.
  • M. Imran and A. R. A. Khan, Characterization of Al-7075 metal matrix composites: a review, J. Mater. Res. Technol. 8 (3), 3347 (2019). DOI: 10.1016/j.jmrt.2017.10.012.
  • V. Balasubramanian et al., Effect of pulsed current welding on mechanical properties of high strength aluminum alloy, Int. J. Adv. Manuf. Technol. 36 (3–4), 254 (2008). DOI: 10.1007/s00170-006-0848-0.
  • S. Kou, Solidification and liquation cracking issues in welding, JOM 55 (6), 37 (2003). DOI: 10.1007/s11837-003-0137-4.
  • N. Murali et al., Study on aluminum alloy joints welded with nano-treated Al-Mg-Mn filler wire, Mater. Lett. 283, 128739 (2021). DOI: 10.1016/j.matlet.2020.128739.
  • M. Reimann et al., Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding, Mater. Des. 132, 283 (2017). DOI: 10.1016/j.matdes.2017.07.013.
  • Z. Y. Ma et al., Superplastic deformation behaviour of friction stir processed 7075Al alloy, Acta Mater. 50 (17), 4419 (2002). DOI: 10.1016/S1359-6454(02)00278-1.
  • D. Oropeza et al., Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire, J. Alloys Compd. 834, 154987 (2020). DOI: 10.1016/j.jallcom.2020.154987.
  • M. Sokoluk et al., High strength nanotreated filler material for TIG welding of AA6061 Light Metals 2020 380–385. DOI: 10.1007/978-3-030-36408-3_54.
  • M. Fattahi et al., Fabrication of aluminum TIG welding filler rods reinforced by ZrO2/reduced graphene oxide hybrid nanoparticles via accumulative roll bonding, Diamond Relat. Mater. 99, 107518 (2019). DOI: 10.1016/j.diamond.2019.107518.
  • E. Ahmadi et al., Microstructure and mechanical properties of Al/ZrC/TiC hybrid nanocomposite filler metals of tungsten inert gas welding fabricated by accumulative roll bonding, J. Manuf. Process. 26, 173 (2017). DOI: 10.1016/j.jmapro.2017.02.012.
  • M. Zuo et al., Microstructure control and performance evolution of aluminum alloy 7075 by nano-treating, Sci. Rep. 9 (1), 10671 (2019). DOI: 10.1038/s41598-019-47182-9.
  • M. Fattahi et al., Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints, J. Mater. Process. Technol. 217, 21 (2015). DOI: 10.1016/j.jmatprotec.2014.10.023.
  • M. Sokoluk et al., Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075, Nat. Commun. 10 (1), 98 (2019). DOI: 10.1038/s41467-018-07989-y.
  • S. Kumar et al., Corrosion behaviour of Al 7075/TiC composites processed through friction stir processing, Mater. Today Proc. 15, 21 (2019). DOI: 10.1016/j.matpr.2019.05.019.
  • Y. L. Cheng et al., The corrosion behaviour of the aluminum alloy 7075/SiCp metal matrix composite prepared by spray deposition, Mater. Corros. 58 (4), 280 (2007). DOI: 10.1002/maco.200604003.
  • Z. J. Wang et al., First-principles calculations on the interface of the Al/TiC aluminum matrix composites, Appl. Surf. Sci. 505, 144502 (2020). DOI: 10.1016/j.apsusc.2019.144502.
  • G. Anne et al., Microstructure, mechanical and corrosion properties of accumulative roll bonded Mg-2%Zn/anodized Al-7075 composite, Mater. Today Proc. 5 (2), 6868 (2018). DOI: 10.1016/j.matpr.2017.11.348.
  • K. B. Nie et al., Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration, Mater. Sci. Eng. A 528 (29-30), 8709 (2011). DOI: 10.1016/j.msea.2011.08.035.
  • K. Ralston and N. Birbilis, Effect of grain size on corrosion: a review, Corrosion 66 (7), 075005 (2010). DOI: 10.5006/1.3462912.
  • Y. C. Lin et al., EBSD study of a hot deformed nickel-based superalloy, J. Alloys Compd. 640, 101 (2015). DOI: 10.1016/j.jallcom.2015.04.008.
  • C. Gao et al., Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting, Addit. Manuf. 34, 101378 (2020). DOI: 10.1016/j.addma.2020.101378.
  • M. Mironova et al., Determination of high-angle grain-boundary misorientations in melt-textured Y-Ba-Cu-O using transmission electron microscopy studies of intragrain structure, Philos. Mag. A 79 (5), 1079 (1999). DOI: 10.1080/01418619908210348.
  • W. Miller and F. Humphreys, Strengthening mechanisms in particulate metal matrix composites, Scr. Metall. Mater. 25 (1), 33 (1991). DOI: 10.1016/0956-716X(91)90349-6.
  • M. Fattahi et al., Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding, Mater. Sci. Eng. A 648, 47 (2015). DOI: 10.1016/j.msea.2015.09.053.
  • C. Ma et al., Nanoparticle-induced unusual melting and solidification behaviours of metals, Nat. Commun. 8, 14178 (2017). DOI: 10.1038/ncomms14178.
  • R. Karunanithi et al., Electrochemical behaviour of TiO2 reinforced Al 7075 composite, Mater. Sci. Eng. B 190, 133 (2014). DOI: 10.1016/j.mseb.2014.06.013.
  • R. Geng et al., Effects of nanosized TiC and TiB2 particles on the corrosion behavior of Al–Mg–Si alloy, Corros. Sci. 167, 108479 (2020). DOI: 10.1016/j.corsci.2020.108479.
  • Y. T. Zhou et al., Grain boundary segregation of alloying Cu induced intergranular corrosion of B4C-6061Al composite, Mater. Charact. 173, 110930 (2021). DOI: 10.1016/j.matchar.2021.110930.
  • A. C. U. Rao et al., Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review, Trans. Nonferrous Met. Soc. China 26 (6), 1447 (2016). DOI: 10.1016/S1003-6326(16)64220-6.
  • L. Shen et al., Stress corrosion cracking behavior of laser-MIG hybrid welded 7B05-T5 aluminum alloy, Corros. Sci. 165, 108417 (2020). DOI: 10.1016/j.corsci.2019.108417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.