41
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Active electrode materials for lithium-ion battery

, , , &
Pages 96-105 | Received 23 Sep 2022, Accepted 27 Mar 2023, Published online: 25 May 2023

References

  • G. Singhal et al., Nanostructured electrodes for next generation rechargeable electrochemical devices, J. Power Sources 129 (1), 38 (2004). DOI: 10.1016/j.jpowsour.2003.11.010.
  • S. H. Ma, H. Noguchi, and M. Yoshio, An observation of peak split in high temperature CV studies on Li-stoichiometric spinel LiMn2O4 electrode, J. Power Sources 125 (2), 228 (2004). DOI: 10.1016/j.jpowsour.2003.08.010.
  • M. Morcrette et al., LiMn2O4 thin films for lithium ion sensors, Solid State Ionics 112 (3–4), 249 (1998). DOI: 10.1016/S0167-2738(98)00231-8.
  • M. Tabuchi et al., Characterization of Li1 − δMn2 − 2δO4 defect spinel materials by their phase transition, magnetic and electrochemical properties, J. Power Sources 68 (2), 623 (1997). DOI: 10.1016/S0378-7753(96)02592-X.
  • J. U. Kim et al., Electrochemical characteristics of LiMn2O4-polypyrrole composite cathode for lithium polymer batteries, J. Power Sources 97–98, 450 (2001). DOI: 10.1016/S0378-7753(01)00743-1.
  • I. J. Davidson et al., Electrochemistry and structure of Li2−xCryMn2−yO4 phases, J. Power Sources 81–82, 406 (1999). DOI: 10.1016/S0378-7753(98)00221-3.
  • S. Komaba et al., Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries, Solid State Ionics 152–153, 311 (2002). DOI: 10.1016/S0167-2738(02)00320-X.
  • Z. Q. Liu et al., Hydrothermal synthesis of nanostructured spinel lithium manganese oxide, J. Solid State Chem. 177 (4–5), 1585 (2004). DOI: 10.1016/j.jssc.2003.12.009.
  • X. H. Xie, X. J. Li, and H. H. Yan, Detonation synthesis of zinc oxide nanometer powders, Mater. Lett. 60 (25–26), 3149 (2006). DOI: 10.1016/j.matlet.2006.02.061.
  • X. H. Xie et al., Growth and morphology of nanometer LiMn2O4 powder, Powder Technol. 169 (3), 143 (2006). DOI: 10.1016/j.powtec.2006.08.007.
  • X. H. Xie et al., Low temperature explosion for nanometer active materials, KEM 324–325, 193 (2006). DOI: 10.4028/www.scientific.net/KEM.324-325.193.
  • X. J. Li et al., Ultrafine oxides during detonation expanse at a fast quenching rate, KEM 324–325, 189 (2006). DOI: 10.4028/www.scientific.net/KEM.324-325.189.
  • X. H. Xie et al., Lithium manganate grown from water-solubility explosive with EPS, Cent. Eur. J. Energetic Mater. 3, 15 (2006).
  • X. H. Xie et al., Parameters of critical detonation of water-gel explosives, in Theory and Practice of Energetic Materials (Science Press, Beijing, 2005), Vol. VI, pp. 169–174.
  • X. J. Li et al., Novel slurry explosives for Li and Mn oxides, in Theory and Practice of Energetic Materials (Science Press, Beijing, 2005), Vol. VI, pp. 153–159.
  • X. H. Xie et al., Synthesis of lithium and zinc oxide nanoagglomerations, Rare Metal Mater. Eng. 35 (Suppl. 2), 355 (2006).
  • X. H. Xie et al., Fine powder grown from liquid-phase nitrates explosive, Proceedings of the UK Forum for Engineering Structural Integrity’s, China Machine Press, Beijing, 2007, pp. 425–428.
  • X. H. Xie et al., Layered lithium zinc oxides grown from an emulsion explosive, Proceedings of the UK Forum for Engineering Structural Integrity’s, China Machine Press, Beijing, 2007, pp. 433–436.
  • X. H. Xie et al., Electricity-heat response curves of energetic materials, in Theory and Practice of Energetic Materials (Science Press, Beijing, 2007), Vol. VII, pp. 244–247.
  • H. S. Zhou et al., Unconventional emulsion explosives with low detonation velocities, in Theory and Practice of Energetic Materials (Science Press, Beijing, 2007), Vol. VII, pp. 633–636.
  • X. H. Xie et al., Lithium and zinc oxides in emulsion explosive soot, Proceedings of ACI, RILEM, CSCE and ACBM International Conference, Lahore, 2007, A-ONE PUBLISHERS, pp. 193–199.
  • X. H. Xie et al., Detonation temperature calculation of water-gel explosives, Proceedings of ACI, RILEM, CSCE and ACBM International Conference, Lahore, 2007, A-ONE PUBLISHERS, pp. 333–342.
  • H. S. Zhou et al., Temperature distribution of electrothermal bridge-wires, Proceedings of ACI, RILEM, CSCE and ACBM International Conference, Lahore, 2007, A-ONE PUBLISHERS, pp. 783–790.
  • H. S. Zhou et al., Thermal decomposition of pyrotechnical charges, Proceedings of ACI, RILEM, CSCE and ACBM International Conference, Lahore, 2007, A-ONE PUBLISHERS, pp. 801–805.
  • X. H. Xie et al., Safety testing of pyrotechnic materials, Proceedings of ACI, RILEM, CSCE and ACBM International Conference, Lahore, 2007, A-ONE PUBLISHERS, pp. 901–909.
  • X. H. Xie, X. J. Li, and S. L. Yan, Lithium and manganese oxides from low temperature detonation, Proceedings of International Conference on Nanoscience and Technology, Beijing, China, 2007, p. 217.
  • X. H. Xie et al., Lithium and zinc oxides deflagration from emulsion explosive, Proceedings of International Conference on Nanoscience and Technology, Beijing, China, 2007, p. 333.
  • X. H. Xie et al., Detonation temperature and soot of slurry explosives, Minsk International Colloquium on Physics of Shock Waves, Combustion, Detonation and Non-Equilibrium Processes, 2005, pp. 54–55.
  • X. H. Xie et al., Firing reliability of bridgewire-charges, Minsk International Colloquium on Physics of Shock Waves, Combustion, Detonation and Non-Equilibrium Processes, 2005.
  • X. H. Xie et al., Calculation and simulation of commercial electrical detonators, Minsk International Colloquium on Physics of Shock Waves, Combustion, Detonation and Non-Equilibrium Processes, 2005.
  • X. H. Xie et al., Safety evaluation on compound by thermal analysis, Minsk International Colloquium on Physics of Shock Waves, Combustion, Detonation and Non-Equilibrium Processes, 2005.
  • X. H. Xie, and X. S. Peng, Non-herd explosion between detonators, in Progress in Safety Science and Technology (Science Press, Beijing, 2002), pp. 1145–1147.
  • X. H. Xie, Detonation safety of blasting caps, J. Coal Sci. Eng. 2, 98 (2002).
  • X. H. Xie, X. S. Peng, and X. X. Hu, Transient pulse testing of commercial electric detonators, in Theory and Practice of Energetic Materials (Science Press, Beijing, 2003), Vol. V, pp. 294–299.
  • X. H. Xie, X. S. Peng, and X. X. Hu, Electrothermal responsibility of bridge wire in media, in Theory and Practice of Energetic Materials (Science Press, Beijing, 2003), Vol. V, pp. 288–293.
  • X. J. Li et al., Preparation of SrAl2O4:Eu2+, Dy3+ nanometer phosphors by detonation method, Mater. Lett. 60 (29–30), 3673 (2006). DOI: 10.1016/j.matlet.2006.03.081.
  • R. Y. Li, X. J. Li, and X. H. Xie, Explosive synthesis of ultrafine Al2O3 and effect of temperature of explosion, Combust. Explos. Shock Waves 42 (5), 607 (2006). DOI: 10.1007/s10573-006-0093-8.
  • W. Y. Huang et al., The production and implication of composite modified water-resistant powdery ammonium nitrate, in Theory and Practice of Energetic Materials (Science Press, Beijing, 2003), Vol. V, pp. 68–72.
  • X. H. Xie, and X. J. Li, Detonation at low temperature, Doctoral Forum of China 13, 23–27 (2006).
  • X. H. Xie, and H. X. Li, Combustion Theory (China Mining University Press, Xuzhou, 2002), pp. 204–211.
  • X. H. Xie, S. L. Yan, and Z. Y. Yang, Initiating Devices (University of Science and Technology of China Press, Hefei, 2009), pp. 45–48.
  • V. Berbenni, and A. Marini, Solid state synthesis of lithiated manganese oxides from mechanically activated Li2CO3–Mn3O4 mixtures, J. Anal. Appl. Pyrolysis 70 (2), 437 (2003). DOI: 10.1016/S0165-2370(03)00003-2.
  • P. Piszora et al., Relationship of crystal structure to interionic interactions in the lithium–manganese spinel oxides, Comput. Chem. 24 (5), 609 (2000). DOI: 10.1016/S0097-8485(00)00060-7.
  • C. M. Julien, and M. Massot, Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides, Mater. Sci. Eng., B 100 (1), 69 (2003). DOI: 10.1016/S0921-5107(03)00077-1.
  • P. W. Chen et al., Spherical nanometer-sized diamond obtained from detonation, Diamond Relat. Mater. 9 (9–10), 1722 (2000). DOI: 10.1016/S0925-9635(00)00306-X.
  • S. I. Troyanov et al., Detonation synthesis and crystal structure of six-layer silicon carbide, Glass Ceram. 57 (7/8), 241 (2000). DOI: 10.1023/A:1007146213813.
  • M. K. Kim et al., A study on the capacity loss with cycling in Li/LixMn2O4 cell, Mater. Lett. 39 (3), 133 (1999). DOI: 10.1016/S0167-577X(98)00229-8.
  • Y. S. Kim et al., Li+ extraction reactions with spinel-type LiM0.5Mn1.5O4 (M = Ti, Fe) and their electronic structures, Mater. Lett. 57 (26–27), 4140 (2003). DOI: 10.1016/S0167-577X(03)00279-9.
  • J. Sugiyama et al., Nonstoichiometry and defect structure of spinel LiMn2O4 − δ, J. Power Sources 68 (2), 641 (1997). DOI: 10.1016/S0378-7753(96)02595-5.
  • Y. Y. Xia et al., Studies on an Li–Mn–O spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries part 1. Synthesis and electrochemical behaviour of LixMn2O4, J. Power Sources 56 (1), 61 (1995). DOI: 10.1016/0378-7753(95)80009-6.
  • V. Massarotti, D. Capsoni, and M. Bini, Stability of LiMn2O4 and new high temperature phases in air, O2 and N2, Solid State Commun. 122 (6), 317 (2002). DOI: 10.1016/S0038-1098(02)00149-7.
  • J. M. Cao et al., Controllable syntheses of hexagonal and lamellar mesostructured lanthanum oxide, Mater. Lett. 59 (4), 408 (2005). DOI: 10.1016/j.matlet.2004.09.034.
  • R. Chitrakar et al., Synthesis of o-LiMnO2 by microwave irradiation and study its heat treatment and lithium exchange, J. Solid State Chem. 163 (1), 1 (2002). DOI: 10.1006/jssc.2001.9403.
  • Y. J. Shin, Capacity fading mechanisms and origin of the capacity above 4.5 V of spinel lithium manganese oxides, Dissertation, The University of Texas at Austin, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.