39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanometer battery materials from explosives

, , , &
Pages 135-142 | Received 19 Jul 2022, Accepted 27 Mar 2023, Published online: 25 May 2023

References

  • J. Liu et al., Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties, Mater. Res. Bull. 36 (13–14), 2357 (2001). DOI: 10.1016/S0025-5408(01)00722-X.
  • S. Ma, H. Noguchi, and M. Yoshio, An observation of peak split in high temperature CV studies on Li-stoichiometric spinel LiMn2O4 electrode, J. Power Sources. 125 (2), 228 (2004). DOI: 10.1016/j.jpowsour.2003.08.010.
  • M. Morcrette et al., LiMn2O4 thin films forlithium ion sensors, Solid State Ionics. 112 (3–4), 249 (1998). DOI: 10.1016/S0167-2738(98)00231-8.
  • M. Tabuchi et al., Characterization of Li1−δMn2−2δO4 defect spinel materials by their phase transition, magnetic and electrochemical properties, J. Power Sources. 68 (2), 623 (1997). DOI: 10.1016/S0378-7753(96)02592-X.
  • J.-U. Kim et al., Electrochemical characteristics of LiMn2O4-polypyrrole composite cathode for lithium polymer batteries, J. Power Sources. 97 − 98, 450 (2001). DOI: 10.1016/S0378-7753(01)00743-1.
  • I. J. Davidson et al., Electrochemistry and structure of Li2−xCryMn2−yO4 phases, J. Power Sources. 81 − 82, 406 (1999). DOI: 10.1016/S0378-7753(98)00221-3.
  • S. Komaba, Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries, Solid State Ionics. 152 − 153, 311 (2002). DOI: 10.1016/S0167-2738(02)00320-X.
  • Z. Liu et al., Hydrothermal synthesis of nanostructured spinel lithium manganese oxide, J. Solid State Chem. 177 (4 − 5), 1585 (2004). DOI: 10.1016/j.jssc.2003.12.009.
  • V. Berbenni, A. Marini, and J. Anal, Solid state synthesis of lithiated manganese oxides from mechanically activated Li2CO3-Mn3O4 mixtures, Appl. Pyrolysis. 70 (2), 437 (2003). DOI: 10.1016/S0165-2370(03)00003-2.
  • X.-M. Lin et al., Transport property and Raman spectra of nanocrystalline solid solutions Ce0.8Nd0.2O2-δ with different, Mater. Chem. Phys. 69 (1 − 3), 236 (2001). DOI: 10.1016/S0254-0584(00)00409-0.
  • C. M. Julien, and M. Massot, Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel, Mater. Sci. Eng, B. 97 (3), 217 (2003). DOI: 10.1016/S0921-5107(02)00582-2.
  • P. W. Chen et al., Spherical nanometer-sized diamond obtained from detonation, Diamond Relate Mater., 9 (9 − 10), 1722 (2000). DOI: 10.1016/S0925-9635(00)00306-X.
  • S. I. Troyanov et al., Silicon carbide, Glass Ceramic. 57 (7/8), 241 (2000). DOI: 10.1023/A:1007146213813.
  • M.-K. Kim et al., A study on the capacity loss with cycling in Li/LixMn2O4 cell, Mater. Lett. 39 (3), 133 (1999). DOI: 10.1016/S0167-577X(98)00229-8.
  • Y.-S. Kim et al., Li+ extraction reactions with spinel-type LiM0.5Mn1.5O4 (M = Ti, Fe) and their electronic structures, Mater. Lett. 57 (26 − 27), 4140 (2003). DOI: 10.1016/S0167-577X(03)00279-9.
  • J. Sugiyama et al., Nonstoichiometry and defect structure of spinel LiMn2O4 − δ, J. Power Sources. 68 (2), 641 (1997). DOI: 10.1016/S0378-7753(96)02595-5.
  • P. Piszora et al., Relationship of crystal structure to interionic interactions in the lithium–manganese spinel oxides, Comput. Chem. 24 (5), 609 (2000). DOI: 10.1016/S0097-8485(00)00060-7.
  • Y. Xia et al., Studies on an Li-Mn-O spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries Part 1. Synthesis and electrochemical behaviour of LixMn2O4, J. Power Sources. 56 (1), 61 (1995). DOI: 10.1016/0378-7753(95)80009-6.
  • V. Massarotti, D. Capsoni, and M. Bini, Stability of LiMn2O4 and new high temperature phases in air, O2 and N2, Solid State Commun. 122 (6), 317 (2002). DOI: 10.1016/S0038-1098(02)00149-7.
  • J. M. Cao et al., Controllable syntheses of hexagonal and lamellar mesostructured lanthanum oxide, Mater. Lett. 59 (4), 408 (2005). DOI: 10.1016/j.matlet.2004.09.034.
  • R. Chitrakar et al., Synthesis of o-LiMnO2 by microwave irradiation and study its heat treatment and lithium exchange, J. Solid State Chem. 163 (1), 1 (2002). DOI: 10.1006/jssc.2001.9403.
  • Y. Shin, Capacity fading mechanisms and origin of the capacity above 4.5 V of spinel lithium manganese oxides, The University of Texas at Austin [Dissertation], (2003).
  • X. H. Xie et al., Synthesis and characterization of nano-spinel lithium manganate, Tms Annual Meeting Supplemental Proceedings, Vol 1: Materials Processing and Properties, 39 (2008).
  • X. H. Xie, and H. S. Zhou, A novel thin sheet phase of oriented LiZnO composite In Advances in Heterogeneous Material Mechanics 2008 (Lancaster: DEStech Publications, Inc., 2008, 971–974).
  • H. S. Zhou, X. H. Xie, and S. L. Yan, Microcosmic difference between detonation soot and deflagration products In Advances in Heterogeneous Material Mechanics 2008 (Lancaster: DEStech Publications, Inc., 2008, 853–856).
  • S. L. Yan, X. H. Xie, and W. Luo, Composite oxides from emulsion explosives In Advances in Heterogeneous Material Mechanics 2008 (Lancaster: DEStech Publications, Inc., 2008, 967–970).
  • X. H. Xie, S. L. Yan, and Z. Y. Yang, Initiating Devices (Hefei: University of Science and Technology of China Press, 2009, 40–55).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.