52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electric field induced phase transition in multicomponent ceramics based on PbMg1/3Nb2/3O3–PbTiO3

& ORCID Icon
Pages 68-74 | Received 18 Sep 2022, Accepted 25 Apr 2023, Published online: 29 Jul 2023

References

  • F. Li et al., Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics, Adv. Funct. Mater. 28 (37), 1801504 (2018). DOI: 10.1002/adfm.201801504.
  • X. Gao et al., Piezoelectric actuators and motors: materials, designs, and applications, Adv. Mater. Technol. 5 (1), 1900716 (2020). DOI: 10.1002/admt.201900716.
  • J. Hao et al., Progress in high-strain perovskite piezoelectric ceramics, Mater. Sci. Eng. R 135, 1 (2019). DOI: 10.1016/j.mser.2018.08.001.
  • S. E. Park, and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82 (4), 1804 (1997). DOI: 10.1063/1.365983.
  • S. Zhang, and F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective, J. Appl. Phys. 111 (3), 031301 (2012). DOI: 10.1063/1.3679521.
  • H. X. Fu, and R. E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature 403 (6767), 281 (2000). DOI: 10.1038/35002022.
  • B. Noheda et al., Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3, Phys. Rev. Lett. 86 (17), 3891 (2001). DOI: 10.1103/PhysRevLett.86.3891.
  • B. Noheda et al., Electric-field-induced phase transitions in rhombohedral Pb(Zn1/3Nb2/3)1−xTixO3, Phys. Rev. B 65 (22), 224101 (2002). DOI: 10.1103/PhysRevB.65.224101.
  • F. Bai et al., X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)-0.3PbTiO3 crystal, J. Appl. Phys. 96 (3), 1620 (2004). DOI: 10.1063/1.1766087.
  • K. Ohwada et al., Neutron diffraction study of field-cooling effects on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3, Phys. Rev. B 67 (9), 094111 (2003). DOI: 10.1103/PhysRevB.67.094111.
  • D. Hou et al., Field-induced polarization rotation and phase transitions in 0.70Pb(Mg1/3Nb2/3)O3−0.30PbTiO3 piezoceramics observed by in situ high-energy x-ray scattering, Phys. Rev. B 97 (21), 214102 (2018). DOI: 10.1103/PhysRevB.97.214102.
  • H. Liu et al., Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials, Phys. Rev. Lett. 119 (1), 017601 (2017). DOI: 10.1103/PhysRevLett.119.017601.
  • M. Otonicar et al., Multiscale field-induced structure of (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 ceramics from combined techniques, Acta Mater. 154, 14 (2018). DOI: 10.1016/j.actamat.2018.05.028.
  • F. Li et al., The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals, Nat. Commun. 7, 13807 (2016). DOI: 10.1038/ncomms13807.
  • F. Li et al., Ultrahigh piezoelectricity in ferroelectric ceramics by design, Nat. Mater. 17 (4), 349 (2018). DOI: 10.1038/s41563-018-0034-4.
  • F. Li et al., Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals, Science 364 (6437), 264 (2019). DOI: 10.1126/science.aaw278.
  • X. Gao et al., Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting, Adv. Funct. Mater. 28 (30), 1706895 (2018). DOI: 10.1002/adfm.201706895.
  • Y. Yu et al., MnO2 doped PSN–PZN–PZT piezoelectric ceramics for resonant actuator application, J. Alloys Compd. 615, 676 (2014). DOI: 10.1016/j.jallcom.2014.06.144.
  • M. V. Talanov, L. A. Shilkina, and L. A. Reznichenko, Anomalies of the dielectric and electromechanical responses of multicomponent ceramics on the basis of PMN–PT near the morphotropic phase boundary, Sens. Actuator A Phys. 217, 62 (2014). DOI: 10.1016/j.sna.2014.05.025.
  • M. V. Talanov, A. A. Pavelko, and L. A. Reznichenko, Low- and high-field electromechanical responses of relaxor-based multicomponent ceramics for application in multiregime actuators, J. Adv. Dielect. 10 (01n02), 2060004 (2020). DOI: 10.1142/S2010135X20600048.
  • M. V. Talanov, A. A. Bokov, and M. A. Marakhovsky, Effects of crystal chemistry and local random fields on relaxor and piezoelectric behavior of lead-oxide perovskites, Acta Mater. 193, 40 (2020). DOI: 10.1016/j.actamat.2020.04.035.
  • S. L. Swartz, and T. R. Shrout, Fabrication of perovskite lead magnesium niobate, Mater. Res. Bull. 17 (10), 1245 (1982). DOI: 10.1016/0025-5408(82)90159-3.
  • M. V. Talanov et al., Effect of barium on the structure and dielectric properties of multicomponent ceramics based on ferroelectric relaxors, Inorg. Mater. 49 (9), 957 (2013). DOI: 10.1134/S0020168513090197.
  • L. A. Reznichenko et al., Preparation, structure and piezoelectric properties of PZN-PMN-PT ceramics in the composition range of large PZN concentrations, Ceram. Int. 38, 3835 (2012). DOI: 10.1016/j.ceramint.2012.01.033.
  • W. Kraus, and G. Nolze, POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr. 29 (3), 301 (1996). DOI: 10.1107/S0021889895014920.
  • B. Noheda et. al., Phase diagram of the ferroelectric relaxor (1 − x)PbMg1/3Nb2/3O3−xPbTiO3, Phys. Rev. B 66 (5), 054104 (2002). DOI: 10.1103/PhysRevB.66.054104.
  • D. Phelan et. al., Phase diagram of the relaxor ferroelectric (1 − x)Pb(Mg1/3Nb2/3)O3+xPbTiO3 revisited: a neutron powder diffraction study of the relaxor skin effect, Phase Transit. 88 (3), 283 (2015). DOI: 10.1080/01411594.2014.989226.
  • M. V. Talanov et. al., Electric-field-induced phase transition in the relaxor ceramics based on PMN-PT, Phys. Solid State 55 (2), 326 (2013). DOI: 10.1134/S1063783413020339.
  • M. V. Talanov, L. A. Shilkina, and L. A. Reznichenko, Evolution of domain processes during the transition from classical ferroelectric to relaxor ferroelectric, Phys. Solid State 54 (5), 990 (2012). DOI: 10.1134/S1063783412050411.
  • E. Zolotoyabko, Determination of the degree of preferred orientation within the March-Dollase approach, J. Appl. Crystallogr. 42 (3), 513 (2009). DOI: 10.1107/S0021889809013727.
  • W. A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: application of the March model, J. Appl. Crystallogr. 19 (4), 267 (1986). DOI: 10.1107/S0021889886089458.
  • J. L. Jones, E. B. Slamovich, and K. J. Bowman, Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction, J. Appl. Phys. 97 (3), 034113 (2005). DOI: 10.1063/1.1849821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.