50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regulation of negative differential resistance behavior of zigzag GeSe nanoribbon by the doping of N atoms and edge passivation

, &
Pages 186-197 | Received 15 May 2023, Accepted 20 Jul 2023, Published online: 28 Nov 2023

References

  • P. Kaushal, and G. Khanna, The role of 2-dimensional materials for electronic devices, Mater. Sci. Semicond. Process. 143, 106546 (2022). DOI: 10.1016/j.mssp.2022.106546.
  • C. Dai, Y. Liu, and D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization, Chem. Rev. 122 (11), 10319 (2022). DOI: 10.1021/acs.chemrev.1c00924.
  • H. Huang et al., Two-dimensional alloyed transition metal dichalcogenide nanosheets: synthesis and applications, Chin. Chem. Lett. 33 (1), 163 (2022). DOI: 10.1016/j.cclet.2021.06.004.
  • R. Wen et al., Electronic transport properties of B/N/P co-doped armchair graphene nanoribbon field effect transistor, Diam. Relat. Mater. 124, 108893 (2022). DOI: 10.1016/j.diamond.2022.108893.
  • M. J. J. Mangnus et al., Charge transport in topological graphene nanoribbons and nanoribbon heterostructures, Phys. Rev. B 105 (11), 115424 (2022). DOI: 10.1103/PhysRevB.105.115424.
  • A. Giuliani, V. Mastropietro, and M. Porta, Lattice gauge theory model for graphene, Phys. Rev. B 82 (12), 121418 (2010). DOI: 10.1103/PhysRevB.82.121418.
  • X. Li et al., Graphene in photocatalysis: a review, Small 12 (48), 6640 (2016). DOI: 10.1002/smll.201600382.
  • A. B. Seabra et al., Nanotoxicity of graphene and graphene oxide, Chem. Res. Toxicol. 27 (2), 159 (2014). DOI: 10.1021/tx400385x.
  • P. Xu et al., Device performance limits and negative capacitance of monolayer GeSe and GeTe tunneling field effect transistors, RSC Adv. 10 (27), 16071 (2020). DOI: 10.1039/D0RA02265A.
  • Y. Guo et al., Sub-5 nm monolayer germanium selenide (GeSe) MOSFETs: towards a high performance and stable device, Nanoscale 12 (28), 15443 (2020). DOI: 10.1039/D0NR02170A.
  • Y. Ye et al., Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties, Chem. Mater. 29 (19), 8361 (2017). DOI: 10.1021/acs.chemmater.7b02784.
  • D.-J. Xue et al., GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation, J. Am. Chem. Soc. 139 (2), 958 (2017). DOI: 10.1021/jacs.6b11705.
  • C. Guo, S. Hao, and T. Wang, The negative differential resistance behaviors of zigzag GeSe nanoribbons with unilateral edge passivation via hydrogen, fluorine and chlorine, J. Electron. Mater. 52 (1), 320 (2023). DOI: 10.1007/s11664-022-09991-z.
  • S.-C. Liu et al., GeSe thin-film solar cells, Mater. Chem. Front. 4 (3), 775 (2020). DOI: 10.1039/C9QM00727J.
  • W. C. Yap et al., Layered material GeSe and vertical GeSe/MoS2 p-n heterojunctions, Nano Res. 11 (1), 420 (2018). DOI: 10.1007/s12274-017-1646-8.
  • A. Slassi et al., Device‐to‐materials pathway for electron traps detection in amorphous GeSe‐based selectors, Adv. Electron. Mater. 2201224 (2023). DOI: 10.1002/aelm.202201224. DOI:
  • M. J. Smiles et al., GeSe photovoltaics: doping, interfacial layer and devices, Faraday Discuss. 239 (0), 250 (2022). DOI: 10.1039/D2FD00048B.
  • A. M. Afzal et al., High performance and gate-controlled GeSe/HfS2 negative differential resistance device, RSC Adv. 12 (3), 1278 (2022). DOI: 10.1039/D1RA07276E.
  • L. Hu et al., In situ design of high‐performance dual‐phase GeSe thermoelectrics by tailoring chemical bonds, Adv. Funct. Mater. 2214854 (2023). DOI: 10.1002/adfm.202214854. DOI:
  • Z.-Q. Fan et al., Tunable electronic structures of GeSe nanosheets and nanoribbons, J. Phys. Chem. C 121 (26), 14373 (2017). DOI: 10.1021/acs.jpcc.7b04607.
  • X. Li et al., Sub-5-nm monolayer Ga Se MOSFET with ultralow subthreshold swing and high on -state current: dielectric layer effects, Phys. Rev. Applied 18 (4), 044012 (2022). DOI: 10.1103/PhysRevApplied.18.044012.
  • M. Dragoman, and D. Dragoman, Negative differential resistance in novel nanoscale devices, Solid-State Electron. 197, 108464 (2022). DOI: 10.1016/j.sse.2022.108464.
  • S. Kharwar, S. Singh, and N. K. Jaiswal, Zn-passivated zigzag boron nitride nanoribbons for perfect spin-filtering and negative differential resistance based devices, IEEE Trans. Nanotechnol. 21, 299 (2022). DOI: 10.1109/TNANO.2022.3183857.
  • M. A. Ebrahimi et al., Negative differential resistance effect and current rectification in Ws2 nanotubes: a density functional theory study, SSRN Electron. J. (2023). DOI: 10.1016/j.jpcs.2023.111369.
  • J. M. Ang et al., Enhancement of temperature-modulated NbO2 -based relaxation oscillator via interfacial and bulk treatments, Nanotechnology 34, 185202 (2023). DOI: 10.1088/1361-6528/acb778.
  • D. Cimbri et al., In 0.53 Ga 0.47 As/AlAs double-barrier resonant tunnelling diodes with high-power performance in the low-terahertz band, in 2022 Fifth International Workshop on Mobile Terahertz Systems (IWMTS) 1–5. (IEEE, 2022). DOI: 10.1109/IWMTS54901.2022.9832442.
  • C. Cheng et al., Controllable low-bias rectifying behaviors induced by AA-P2 dopants in armchair silicene nanoribbons with different widths, Coatings 13 (1), 106 (2023). DOI: 10.3390/coatings13010106.
  • B. Lu et al., Demonstration of giant anisotropic magnetoresistance, high spin filtering efficiency, and negative differential resistance in nanodevices based on oxygen doped black arsenic phosphorus nanoribbons, Phys. Lett. A 449, 128351 (2022). DOI: 10.1016/j.physleta.2022.128351.
  • Z. Jiang et al., Rectifying performance induced by B/P, B/As, and B/Sb co-doped armchair graphene nanoribbons P-N junction: a DFT investigation, Chin. J. Phys. 78, 13 (2022). DOI: 10.1016/j.cjph.2022.06.007.
  • R. Li, H. Cao, and J. Dong, Electronic properties of group-IV monochalcogenide nanoribbons: Studied from first-principles calculations, Phys. Lett. A 381 (44), 3747 (2017). DOI: 10.1016/j.physleta.2017.09.048.
  • M. Zhang et al., The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures, Phys. Chem. Chem. Phys. 19 (26), 17210 (2017). DOI: 10.1039/C7CP02201H.
  • M. Brandbyge et al., Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65 (16), 165401 (2002). DOI: 10.1103/PhysRevB.65.165401.
  • J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63 (24), 245407 (2001). DOI: 10.1103/PhysRevB.63.245407.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • R. Landauer, Electrical resistance of disordered one-dimensional lattices, Philos. Mag. 21 (172), 863 (1970). DOI: 10.1080/14786437008238472.
  • D. L. Tiwari, and K. Sivasankaran, Nitrogen-doped NDR behavior of double gate graphene field effect transistor, Superlattices Microstruct. 136, 106308 (2019). DOI: 10.1016/j.spmi.2019.106308.
  • V. T. Phuc et al., Effect of phosphorus doping positions on electronic transport properties in the sawtooth penta-graphene nanoribbon: first-principles insights, Solid State Commun. 353, 114859 (2022). DOI: 10.1016/j.ssc.2022.114859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.