73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electronic and thermoelectric properties of ZnO/Cu2O heterostructures: First principles calculations

&
Pages 115-131 | Received 22 May 2023, Accepted 23 Jul 2023, Published online: 28 Nov 2023

References

  • O. Caballero‐Calero, J. R. Ares, and M. Martín‐González, Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth, Adv. Sustain. Syst. 5 (11), 2100095 (2021). DOI: 10.1002/adsu.202100095.
  • R. A. Kishore et al., High-performance thermoelectric generators for field deployments, ACS Appl. Mater. Interfaces 12 (9), 10389 (2020). DOI: 10.1021/acsami.9b21299.
  • C. Fu et al., Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, Nat. Commun. 6 (1), 8144 (2015). DOI: 10.1038/ncomms9144.
  • F. K. Butt et al., Investigation of thermoelectric properties of novel cubic phase SnSe: a promising material for thermoelectric applications, J. Alloys Compd. 715, 438 (2017). DOI: 10.1016/j.jallcom.2017.05.003.
  • M. Zhu and S.-Q. Xia, New polymorph of CaZnGe: synthesis, crystal structure and thermoelectric properties, J. Alloys Compd. 774, 502 (2019). DOI: 10.1016/j.jallcom.2018.10.033.
  • M. Kaddes and M. Zemzemi, Computational study of electronic and thermoelectric properties of ZnO/graphene heterostructures, Int. J. Thermophys. 42 (7), 100 (2021). DOI: 10.1007/s10765-021-02854-5.
  • E. M. Sher, Proc. ICT2001 20 Int. Conf. Thermoelectr, Beijing, China, Cat No01TH8589, IEEE, 2001, pp. 184–186.
  • I. Terasaki, Novel physics and functions in the layered cobalt oxides from thermoelectricity to ferromagnetism, Phys. B Condens. Matter 383 (1), 107 (2006). DOI: 10.1016/j.physb.2006.03.069.
  • K. Kim et al., Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures, Nanoscale 10 (6), 3046 (2018). DOI: 10.1039/c7nr08167g.
  • C. Adessi et al., Ab initio investigation of the role of vanadium impurity states in SrTiO3 for thermoelectricity, J. Phys. Chem. Solids 138, 109180 (2020). DOI: 10.1016/j.jpcs.2019.109180.
  • P. Kaya et al., High-temperature thermoelectricity in LaNiO3–La2CuO4 heterostructures, ACS Appl. Mater. Interfaces 10 (26), 22786 (2018). DOI: 10.1021/acsami.8b02153.
  • M. Ohtaki, K. Araki, and K. Yamamoto, High thermoelectric performance of dually doped ZnO ceramics, J. Elec. Mater. 38 (7), 1234 (2009). DOI: 10.1007/s11664-009-0816-1.
  • X. Chen et al., Potential thermoelectric performance of hole-doped Cu2O, New J. Phys. 15 (4), 043029 (2013). DOI: 10.1088/1367-2630/15/4/043029.
  • F. H. Abdullah, N. H. H. A. Bakar, and M. A. Bakar, Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems, J. Hazard. Mater. 424 (Pt B), 127416 (2022). DOI: 10.1016/j.jhazmat.2021.127416.
  • A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications, Prog. Quantum Electron. 34 (4), 191 (2010). DOI: 10.1016/j.pquantelec.2010.04.001.
  • B. S. Chua et al., High-rate, room temperature plasma-enhanced deposition of aluminum-doped zinc oxide nanofilms for solar cell applications, J. Alloys Compd. 485 (1–2), 379 (2009). DOI: 10.1016/j.jallcom.2009.05.099.
  • S.-H. Park, S.-H. Kim, and S.-W. Han, Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications, Nanotechnology 18 (5), 055608 (2007). DOI: 10.1088/0957-4484/18/5/055608.
  • L. Znaidi et al., Oriented ZnO thin films synthesis by sol–gel process for laser application, Thin Solid Films 428 (1–2), 257 (2003). DOI: 10.1016/S0040-6090(02)01219-1.
  • T. Tsubota et al., Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion, J. Mater. Chem. 7 (1), 85 (1997). DOI: 10.1039/a602506d.
  • D. Gautam et al., Thermoelectric properties of pulsed current sintered nanocrystalline Al-doped ZnO by chemical vapour synthesis, J. Mater. Chem. A 3 (1), 189 (2015). DOI: 10.1039/C4TA04355C.
  • A. O. Musa, T. Akomolafe, and M. J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Sol. Energy Mater. Sol. Cells 51 (3–4), 305 (1998). DOI: 10.1016/S0927-0248(97)00233-X.
  • P. Poizot et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (6803), 496 (2000). DOI: 10.1038/35035045.
  • J. Zhang et al., Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater. 18 (4), 867 (2006). DOI: 10.1021/cm052256f.
  • H. Zhang, X. Ren, and Z. Cui, Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers, J. Cryst. Growth 304 (1), 206 (2007). DOI: 10.1016/j.jcrysgro.2007.01.043.
  • B. White et al., Complete CO oxidation over Cu2O nanoparticles supported on silica gel, Nano Lett. 6 (9), 2095 (2006). DOI: 10.1021/nl061457v.
  • D. Snoke, Coherent exciton waves, Science 273 (5280), 1351 (1996). DOI: 10.1126/science.273.5280.1351.
  • M. Zemzemi and S. Alaya, Band offset of the ZnO/Cu2O heterojunction from ab initio calculations, Superlattices Microstruct. 64, 311 (2013). DOI: 10.1016/j.spmi.2013.09.041.
  • C. Abinaya et al., The effect of post-deposition annealing conditions on structural and thermoelectric properties of sputtered copper oxide films, RSC Adv. 10 (49), 29394 (2020). DOI: 10.1039/d0ra03906c.
  • A. Sekkat et al., Unveiling key limitations of ZnO/Cu2O all-oxide solar cells through numerical simulations, ACS Appl. Energy Mater. 5 (5), 5423 (2022). DOI: 10.1021/acsaem.1c03939.
  • Y. Ievskaya et al., Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance, Sol. Energy Mater. Sol. Cells 135, 43 (2015). DOI: 10.1016/j.solmat.2014.09.018.
  • T. Özdal and H. Kavak, Fabrication and characterization of ZnO/Cu2O heterostructures for solar cells applications, Superlattices Microstruct. 146, 106679 (2020). DOI: 10.1016/j.spmi.2020.106679.
  • T. Jiang et al., Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique, Phys. Chem. Chem. Phys. 12 (47), 15476 (2010). DOI: 10.1039/c0cp01228a.
  • R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1995).
  • H. Smith and H. H. Jensen, Transport Phenomena (Clarendon Press; Oxford University Press, Oxford; New York, NY, 1989).
  • X. Gonze et al., ABINIT: first-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180 (12), 2582 (2009). DOI: 10.1016/j.cpc.2009.07.007.
  • P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B Condens. Matter 50 (24), 17953 (1994). DOI: 10.1103/physrevb.50.17953.
  • K. F. Garrity et al., Pseudopotentials for high-throughput DFT calculations, Comput. Mater. Sci. 81, 446 (2014). DOI: 10.1016/j.commatsci.2013.08.053.
  • H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12), 5188 (1976). DOI: 10.1103/PhysRevB.13.5188.
  • G. K. H. Madsen and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (1), 67 (2006). DOI: 10.1016/j.cpc.2006.03.007.
  • G. D. Mahan and J. O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. U.S.A. 93 (15), 7436 (1996). DOI: 10.1073/pnas.93.15.7436.
  • T. M. Tritt, ed. Thermal Conductivity: Theory, Properties, and Applications (Springer, New York, NY, 2004).
  • S. Sood and P. Gouma, Polymorphism in nanocrystalline binary metal oxides, Nanomater. Energy 2 (2), 82 (2013). DOI: 10.1680/nme.12.00037.
  • K. Chen et al., Polymorphic crystallization of Cu2O compound, CrystEngComm 16 (24), 5257 (2014). DOI: 10.1039/C4CE00339J.
  • D. Machon et al., Structural transitions in Cu2O at pressures up to 11 GPa, J. Phys. Condens. Matter 15 (43), 7227 (2003). DOI: 10.1088/0953-8984/15/43/007.
  • M. Zemzemi et al., First-principle study of the structural, electronic, and thermodynamic properties of cuprous oxide under pressure, J. Exp. Theor. Phys. 118 (2), 235 (2014). DOI: 10.1134/S1063776114020228.
  • P. Cortona and M. Mebarki, Cu2O behavior under pressure: an ab initio study, J. Phys. Condens. Matter 23 (4), 045502 (2011). DOI: 10.1088/0953-8984/23/4/045502.
  • A. Schleife et al., First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs, Phys. Rev. B 73 (24), 245212 (2006). DOI: 10.1103/PhysRevB.73.245212.
  • A. Frano et al., Layer selective control of the lattice structure in oxide superlattices, Adv. Mater. 26 (2), 258 (2014). DOI: 10.1002/adma.201303483.
  • P. Erhart et al., Analytic bond-order potential for atomistic simulations of zinc oxide, J. Phys. Condens. Matter 18 (29), 6585 (2006). DOI: 10.1088/0953-8984/18/29/003.
  • S. Desgreniers, High-density phases of ZnO: structural and compressive parameters, Phys. Rev. B 58 (21), 14102 (1998). DOI: 10.1103/PhysRevB.58.14102.
  • K. Ozawa, Y. Oba, and K. Edamoto, Formation and characterization of the Cu2O overlayer on Zn-terminated ZnO(0001), Surf. Sci. 603 (13), 2163 (2009). DOI: 10.1016/j.susc.2009.04.027.
  • A. Filippetti and V. Fiorentini, Coexistence of ionic and metallic bonding in noble-metal oxides, Phys. Rev. B 72 (3), 035128 (2005). DOI: 10.1103/PhysRevB.72.035128.
  • A. Hallil, J.-M. Raulot, and M. Cherkaoui, Atomistic simulations of Cu2O bulk and Cu/Cu2O interface properties by using a new interatomic potential, Comput. Mater. Sci. 81, 366 (2014). DOI: 10.1016/j.commatsci.2013.08.046.
  • R. W. G. Wyckoff, The Structure of Crystals (Chemical Catalog Company, New York, 1931).
  • J. R. Rumble, ed. CRC Handbook of Chemistry and Physics, 102nd ed. (CRC Press, Boca Raton, FL; London; New York, NY, 2021), pp. 2021–2022.
  • O. Gunnarsson, B. I. Lundqvist, and J. W. Wilkins, Contribution to the cohesive energy of simple metals: spin-dependent effect, Phys. Rev. B 10 (4), 1319 (1974). DOI: 10.1103/PhysRevB.10.1319.
  • A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys. 102 (7), 071101 (2007). DOI: 10.1063/1.2787957.
  • D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, NY, 1972).
  • F. Mouhat and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90 (22), 224104 (2014). DOI: 10.1103/PhysRevB.90.224104.
  • M. Catti, Y. Noel, and R. Dovesi, Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations, J. Phys. Chem. Solids 64 (11), 2183 (2003). DOI: 10.1016/S0022-3697(03)00219-1.
  • T. B. Bateman, Elastic moduli of single-crystal zinc oxide, J. Appl. Phys. 33 (11), 3309 (1962). DOI: 10.1063/1.1931160.
  • A. Živković, A. Roldan, and N. H. de Leeuw, Density functional theory study explaining the underperformance of copper oxides as photovoltaic absorbers, Phys. Rev. B 99 (3), 035154 (2019). DOI: 10.1103/PhysRevB.99.035154.
  • J. Hallberg and R. C. Hanson, The elastic constants of cuprous oxide, Phys. Stat. Sol. B 42 (1), 305 (1970). DOI: 10.1002/pssb.19700420131.
  • A. Živković et al., Electronic excitations in copper oxides: time-dependent density functional theory calculations with a self-consistent hybrid kernel, J. Phys. Chem. C 124 (45), 24995 (2020). DOI: 10.1021/acs.jpcc.0c08270.
  • J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk: Electronic structure of Cu2O and CuO. Phys. Rev. B Condens. Matter38(16), 11322 (1988). DOI: 10.1103/physrevb.38.11322.
  • L. Kleinman and K. Mednick, Self-consistent energy bands of Cu2O, Phys. Rev. B 21 (4), 1549 (1980). DOI: 10.1103/PhysRevB.21.1549.
  • F. Bruneval et al., Exchange and correlation effects in electronic excitations of Cu2O, Phys. Rev. Lett. 97 (26), 267601 (2006). DOI: 10.1103/PhysRevLett.97.267601.
  • A. A. Hssi et al., (Ouarzazate, Morocco, 2018), p. 020006.
  • L. E. Orgel, 843. Stereochemistry of metals of the B sub-groups. Part I. Ions with filled d-electron shells, J. Chem. Soc, 4186 (1958). DOI: 10.1039/jr9580004186.
  • Z.-G. Chen et al., Nanostructured thermoelectric materials: current research and future challenge, Prog. Nat. Sci. Mater. Int. 22 (6), 535 (2012). DOI: 10.1016/j.pnsc.2012.11.011.
  • R. S. Sankar, S. Anwar, and S. Anwar, Enhanced thermoelectric power factor in the Cu2Se system by the incorporation of GO/MWCNT, Phys. B Condens. Matter 652, 414620 (2023). DOI: 10.1016/j.physb.2022.414620.
  • N. Pryds and R. Bjørk, Advanced Ceramics for Energy Conversion and Storage (Elsevier, Amsterdam, 2020), pp. 131–156.
  • D. Hartung et al., Assessing the thermoelectric properties of CuxO (x = 1 to 2) thin films as a function of composition, Appl. Phys. Lett. 106 (25), 253901 (2015).
  • S. Kavirajan et al., Phase transition induced thermoelectric properties of Cu2Te by melt growth process, Mater. Lett. 298, 129957 (2021). DOI: 10.1016/j.matlet.2021.129957.
  • X. Qiu et al., Phase transition behaviors and thermoelectric properties of CuAgTe1–xSex near 400 K, ACS Appl. Mater. Interfaces 14 (1), 1015 (2022). DOI: 10.1021/acsami.1c20333.
  • J. E. Robinson, Thermoelectric power in the nearly-free-electron model, Phys. Rev. 161 (3), 533 (1967). DOI: 10.1103/PhysRev.161.533.
  • B. Xu and M. J. Verstraete, First principles explanation of the positive Seebeck coefficient of lithium, Phys. Rev. Lett. 112 (19), 196603 (2014). DOI: 10.1103/PhysRevLett.112.196603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.