50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the properties of sodium bismuth titanate coating prepared by supersonic plasma spraying

, , , , &
Pages 81-94 | Received 29 May 2023, Accepted 25 Jul 2023, Published online: 28 Nov 2023

References

  • J. Yin et al., Thermal sprayed lead-free piezoelectric ceramic coatings for ultrasonic structural health monitoring, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 69 (11), 3070 (2022). DOI: 10.1109/TUFFC.2022.3176488.
  • T. Lee et al., Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age[J], Constr. Build. Mater. 252 (10), 119027 (2020). DOI: 10.1016/j.conbuildmat.2020.119027.
  • C. R. Farrar et al., An introduction to structural health monitoring, Philos. Trans. A Math. Phys. Eng. Sci. 365 (1851), 303 (2007). DOI: 10.1098/rsta.2006.1928.
  • X. W. Ye et al., Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data[J], Eng. Struct. 45 (15), 166 (2012). DOI: 10.1016/j.engstruct.2012.06.016.
  • K. Worden et al., The fundamental axioms of structural health monitoring, Proc. R Soc. A 463 (2082), 1639 (2007). DOI: 10.1098/rspa.2007.1834.
  • K. Yao et al., Enabling distributed intelligence with ferroelectric multifunctionalities, Adv. Sci. 9 (1), 2103842 (2022). DOI: 10.1002/advs.202103842.
  • Z. Y. Zhou et al., Effect of surface burnishing process with different strain paths on the copper microstructure, J. Manuf. Process. 71, 653 (2021). DOI: 10.1016/j.jmapro.2021.09.058.
  • Z. Y. Zhou et al., Research on the promotion mechanism of surface burnishing process by two-dimensional ultrasonic vibration[J], J. Mater. Res. Technol. 13, 1068 (2021). DOI: 10.1016/j.jmrt.2021.05.038.
  • Y. F. Su et al., Embeddable piezoelectric sensors for strength gain monitoring of cementitious materials: the influence of coating materials[J], Eng. Sci. 11 (10), 66 (2020). DOI: 10.30919/es8d1114.
  • M. Chelu et al., High-quality PMMA/ZnO NWs piezoelectric coating on rigid and flexible metallic substrates[J], Appl. Surf. Sci. 529, 147135 (2020). DOI: 10.1016/j.apsusc.2020.147135.
  • J. L. H. Clabel et al., Growth process and grain boundary defects in Er doped BaTiO3 processed by EB-PVD: A study by XRD, FTIR, SEM and AFM[J]. Appl. Surf. Sci. 493, 982 (2019). DOI: 10.1016/j.apsusc.2019.07.003.
  • T. Vrabelj et al., The effect of calcium zirconate modifications on the microstructure and functional properties of sodium niobate thin films prepared by chemical solution deposition[J], J. Eur. Ceram. Soc. 39 (7), 2325 (2019). DOI: 10.1016/j.jeurceramsoc.2019.02.014.
  • A. Vannozzi et al., Development and characterization of biaxially-textured lanthanum zirconate film grown on cold-rolled Ni-W substrate by chemical solution deposition[J], J. Alloys Compd. 735, 454 (2018). DOI: 10.1016/j.jallcom.2017.11.149.
  • G. Tan et al., Piezoelectric properties of epitaxial Pb (Zr, Ti) O3 thin films grown on Si substrates by the sol–gel method[J], Thin Solid Films 764, 139612 (2023). DOI: 10.1016/j.tsf.2022.139612.
  • A. V. Semchenko et al., Piezoelectric properties of SrBi2 (TaxNb1−x)2O9 thin films synthesized by sol–gel method[C], in Research and Education: Traditions and Innovations: Proceedings of the 19th International Conference on Global Research and Education (Inter-Academia 2021). Springer Singapore, Singapore, 2022, pp. 325–332 DOI: 10.1007/978-981-19-0379-3_34.
  • V. C. Nguyen et al., Evaluation of electromechanical characteristics for screen printed piezoelectric sensor-based Pu/PZT composite[C], in Electroactive Polymer Actuators and Devices (EAPAD) XXIV. SPIE, 12042, 2022, pp. 326–334 DOI: 10.1117/12.2609769.
  • H. Ursic et al., Investigation of piezoelectric 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 films in cross section using piezo-response force microscopy[J], Appl. Phys. Lett. 121 (19), 192905 (2022). DOI: 10.1063/5.0104829.
  • J. Wang et al., The mechanism for the enhanced mechanical and piezoelectricity properties of La2O3 doped BaTiO3 ceramic coatings prepared by plasma spray[J], J. Alloys Compd. 897, 162944 (2022). DOI: 10.1016/j.jallcom.2021.162944.
  • S. Chen et al., Potassium sodium niobate (KNN)‐based lead‐free piezoelectric ceramic coatings on steel structure by thermal spray method[J], J. Am. Ceram. Soc. 101 (12), 5524 (2018). DOI: 10.1111/jace.15820.
  • K. Yao et al., Lead-free piezoelectric ceramic coatings fabricated by thermal spray process[J], IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 64 (11), 1758 (2017). DOI: 10.1109/TUFFC.2017.2748154.
  • L. L. Zhou et al., Study on properties of potassium sodium niobate coating prepared by high efficiency supersonic plasma spraying, Actuators 11 (2), 28 (2022). DOI: 10.3390/act11020028.
  • Y. W. Wang et al., Microstructure 344 and properties of CrB2-Cr3C2 composite coatings prepared by plasma spraying[J], Surf. Coat. Technol. 425, 127693 (2021). DOI: 10.1016/j.surfcoat.2021.127693.
  • J. J. Yang et al., Synergistic lubrication of Ag and Ag2MoO4 nanoparticles anchored in plasma-sprayed YSZ coatings: Remarkably-durable lubricating performance at 800 °C[J], Tribol. Int. 153, 106670 (2021). DOI: 10.1016/j.triboint.2020.106670.
  • S. Y. Chen et al., Investigation on the bonding behavior of the interface within the supersonic plasma sprayed coating system based on the fractal theory[J], Acta Phys. Sin. 63 (5), 156801 (2014). DOI: 10.7498/aps.63.156801.
  • G. L. Li et al., Microstructures and dielectric properties of PZT coatings prepared by supersonic plasma spraying[J], J. Thermal Spray Technol. 23 (3), 525 (2014). DOI: 10.1007/s11666-013-0040-7.
  • W. Haessler et al., Structure and electrical properties of PZT thick films produced by plasma spraying[J], Mater. Lett. 24 (6), 387 (1995). DOI: 10.1016/0167-577X(95)00123-9.
  • J. Zhang et al., Fabrication and performance of PNN-PZT piezoelectric ceramics obtained by low-temperature sintering[J], Sci. Eng. Compos. Mater. 27 (1), 359 (2020). DOI: 10.1515/secm-2020-0039.
  • Z. G. Xing et al., Properties of the BaTiO3 coating prepared by supersonic plasma spraying, J. Alloys Compd. 582, 246 (2014). DOI: 10.1016/j.jallcom.2013.08.036.
  • S. Chen et al., Potassium-sodium niobate-based lead-free piezoelectric ceramic coatings by thermal spray process, J. Am. Ceram. Soc. 99 (10), 3293 (2016). DOI: 10.1111/jace.14342.
  • S. F. Guo et al., Ultrasonic transducers from thermal sprayed lead-free piezoelectric ceramic coatings for in situ structural monitoring for pipelines, Smart Mater. Struct. 28 (7), 075031 (2019). DOI: 10.1088/1361-665X/ab1e88.
  • K. Guo et al., Bismuth sodium titanate lead‐free piezoelectric coatings by thermal spray process[J], J. Am. Ceram. Soc. 100 (8), 3385 (2017). DOI: 10.1111/jace.14882.
  • Z. Liu et al., Fabrication and post heat treatment of 0.5Pb (Mg1/3Nb2/3)O3-0.5Pb(Zr0.48Ti0.52)O3 coatings by supersonic plasma spray[J], J. Eur. Ceram. Soc. 37 (11), 3511 (2017). DOI: 10.1016/j.jeurceramsoc.2017.04.043.
  • P. Pookmanee et al., Synthesis and properties of bismuth sodium titanate (BNT), part I: chemical synthesis of fine single-phase bismuth sodium titanate powders. Ceram. Forum Int. 78 (7), E27 (2001).
  • M. S. A. Rahim et al., Plasma spray ceramic coating and measurement of developed coating behaviour, IJPTECH. 1 (2), 163 (2009). DOI: 10.1504/IJPTECH.2009.026375.
  • S. Sathish et al., Microstructure and corrosion behaviour of plasma sprayed bilayered ceramic coatings, Trans. Indian Ceram. Soc. 74 (2), 97 (2015). DOI: 10.1080/0371750X.2015.1046611.
  • S. W. Yao et al., Understanding the formation of limited interlamellar bonding in plasma sprayed ceramic coatings based on the concept of intrinsic bonding temperature, J. Thermal Spray Technol. 25 (8), 1617 (2016). DOI: 10.1007/s11666-016-0464-y.
  • P. Huo et al., Microstructures and properties of Sm2(Zr0.7Ce0.3)2O7/8YSZ double-ceramic-layer thermal barrier coatings deposited by atmospheric plasm, J. Thermal Spray Technol. 28 (5), 986 (2019). DOI: 10.1007/s11666-019-00867-z.
  • M. N. Baig et al., Deposition and characterization of plasma sprayed Ni-5A1/magnesia stabilized zirconia based functionally graded thermal barrier coating, IOP Conf. Ser: Mater. Sci. Eng. 60, 012053 (2014). DOI: 10.1088/1757-899X/60/1/012053.
  • D. J. Song et al., Microstructure and mechanical properties of PbSn alloys deposited on carbon fiber reinforced epoxy composites, J. Alloys Compd. 505 (1), 348 (2010). DOI: 10.1016/j.jallcom.2010.06.067.
  • S. Singh et al., Oxygen vacancies induced anomalies in the structural, ferroelectric and magnetic behaviour of sol-gel derived LaCoO3 modified Na0.5Bi0.5TiO3 ceramics[J], Mater. Chem. Phys. 279, 125754 (2022). DOI: 10.1016/j.matchemphys.2022.125754.
  • G. L. Mar et al., Factors influencing the chemical vapor deposition of oriented ZnO films using zinc acetate[J], Chem. Mater. 7 (10), 1890 (1995). DOI: 10.1021/cm00058a020.
  • K. S. Samantaray et al., Room temperature magneto-dielectric coupling in the CaMnO3 modified NBT lead-free ceramics[J], Appl. Phys. A 129 (4), 237 (2023). DOI: 10.1007/s00339-023-06513-4.
  • A. Chauhan et al., Bi0.5Na0.5TiO3-BiOCl composite photocatalyst for efficient visible light degradation of dissolved organic impurities[J], J. Environ. Chem. Eng. 7 (1), 102842 (2019). DOI: 10.1016/j.jece.2018.102842.
  • Z. H. Ai et al., Efficient photocatalytic removal of nitric oxide with hydrothermal synthesized Na0.5Bi0.5TiO3 nanotubes[J], J. Alloys Compd. 613, 260 (2014). DOI: 10.1016/j.jallcom.2014.06.039.
  • Z. Chen et al., Optical and electrical properties of ferroelectric Ba Bi0.5-0.5Ag0.05-0.5Na0.45Ti1-xNi0.5Nb0.5O3 Semiconductor Ceramics[J], Mater. Lett. 268, 127627 (2020). DOI: 10.1016/j.matlet.2020.127627.
  • P. Y. Chen et al., Effects of second phase and defect on electrical properties in Bi0.5Na0.5-xKxTiO3 lead-free piezoelectric ceramics[J], AMR. 284–286, 1343 (2011). DOI: 10.4028/www.scientific.net/AMR.284-286.1343.
  • Z. G. Xing et al., Structural integrity and ferroelectric–piezoelectric properties of PbTiO3 coating prepared via supersonic plasma spraying[J], Mater. Design 62, 57 (2014). DOI: 10.1016/j.matdes.2014.04.077.
  • M. Q. Zhong et al., Photocurrent density and electrical properties of Bi0.5Na0.5TiO3-BaNi0.5Nb0.5O3 ceramics[J], J. Adv. Ceram. 10 (5), 1119 (2021). DOI: 10.1007/s40145-021-0497-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.