54
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Improvement of the structural, dielectric, ferroelectric, and piezoelectric of PbZr0.52Ti0.48O3 nanopowder features for ultrasonic applications

ORCID Icon, , , &
Pages 8-28 | Received 04 Jun 2023, Accepted 25 Jul 2023, Published online: 28 Nov 2023

References

  • S. Sakka, History of ferroelectric materials prepared by sol-gel method, J. Sol-Gel Sci. Technol. 101, 140 (2022). DOI: 10.1007/s10971-021-05712-w.
  • Z. Liu et al., Piezoelectric and Ferroelectric Materials: Fundamentals, Recent Progress, and Applications, 3rd ed. (Elsevier, Canada, 2022).
  • G. H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc. 82 (4), 797 (1999). DOI: 10.1111/j.1151-2916.1999.tb01840.x.
  • M. Prabu et al., Synthesis and optical characterization of lead zirconate titanate (52/48) powders by sol–gel method, Adv. Sci. Eng. Med. 5 (5), 496 (2013). DOI: 10.1166/asem.2013.1280.
  • S. Zhang et al., Recent developments in piezoelectric crystals, J. Korean Ceram. Soc. 55 (5), 419 (2018). DOI: 10.4191/kcers.2018.55.5.12.
  • A. Tawfik et al., High piezoelectric properties of modified nano lead titanate zirconate ceramics, Mater. Chem. Phys. 211, 1 (2018). DOI: 10.1016/j.matchemphys.2018.01.073.
  • N. Elmawati Falabiba, Piezoelectricity Evolution and Future of Technology (Springer Series in Materials Science, Berlin/Heidelberg, Germany, 2019).
  • Z. Cheng and J. Lin, Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering, CrystEngComm 12 (10), 2646 (2010). DOI: 10.1039/c001929a.
  • R. S. Dahiya and M. Valle, Robotic Tactile Sensing: Technologies and System (Springer Science & Business Media, Dordrecht, the Netherlands, 2014), pp. 1–248.
  • R. Mishra, S. Jain, and C. D. Prasad, A review on piezoelectric material as a source of generating electricity and its possibility to fabricate devices for daily uses of army personnel, Int. J. Syst. Control Commun. 6 (3), 212 (2015). DOI: 10.1504/IJSCC.2015.068908.
  • X. Zhu, Piezoelectric Ceramics Materials: Processing, Properties, Characterization, and Applications (Nova Science Publishers, Hauppauge, NY, 2010).
  • E. A. R. Assirey, Perovskite synthesis, properties and their related biochemical and industrial application, Saudi Pharm. J. 27 (6), 817 (2019). DOI: 10.1016/j.jsps.2019.05.003.
  • B. Sahoo et al., Preparation of PZT & PMN materials by wet-chemical method, fabrication and technology demonstration of a multi-layered stack, presented at the ISSS 2005 International Conference on Smart Materials, Structures and Systems, Bangalore, India, 28–30 Jul. 2005.
  • J. Wu, Advances in Lead-free Piezoelectric Materials (Springer, New York, NY, 2018).
  • C. Chung, Microstructural evolution in lead zirconate titanate (PZT) piezoelectric ceramics, Ph.D. dissertation, University of Connecticut, 2014.
  • T. Zheng et al., Recent development in lead-free perovskite piezoelectric bulk materials, Prog. Mater. Sci. 98, 552 (2018). DOI: 10.1016/j.pmatsci.2018.06.002.
  • M. Properties, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures, J. Am. Ceram. Soc. 97 (1), 1 (2014). DOI: 10.1111/jace.12773.
  • A. A. Kamal et al., The effect of domain switching on the lattice symmetry and dielectric, Mater. Chem. Phys. 288 (June), 126420 (2022). DOI: 10.1016/j.matchemphys.2022.126420.
  • M. N. Smirnova et al., PZT 50/50 nanocrystalline powders with tetragonal structure prepared via gel combustion route: Effect of heat treatment on phase and chemical compositions, Ceram. Int. 47 (11), 16232 (2021). DOI: 10.1016/j.ceramint.2021.02.202.
  • J. Choy and Y. Han, Citrate route to the piezoelectric Pb(Zr,Ti)O3 oxide, J. Mater. Chem. 7, 1807 (1997). DOI: 10.1039/a700687j.
  • G. Tutuncu, Analysis and interpretation of diffraction data from complex, anisotropic materials, Theses and Dissertations, Iowa State University, 2010. https://dr.lib.iastate.edu/handle/20.500.12876/25795.
  • E. A. Eid et al., Synthesis and microstructure characterization of sol-gel derived phase fractions in PZT nanopowders, Dig. J. Nanomater. Biostructures 15 (2), 465 (2020). DOI: 10.15251/DJNB.2020.152.465.
  • S. Mansour et al., Dielectric and piezoelectric performance of gadolinium-doped lead lanthanum zirconate titanate, Int. J. Appl. Ceram. Technol. 15, 766, 2018. DOI: 10.1111/ijac.12835.
  • T. A. Babu et al., Structural and electrical studies of excessively Sm2O3 substituted soft PZT nanoceramics, Ceram. Int. 47 (22), 31294 (2021). DOI: 10.1016/j.ceramint.2021.08.002.
  • D. Hidayat, M. Tau, and S. Setianto, One-step synthesis of lead zirconate titanate particles using a solid-state reaction method, Heliyon 8 (3), e09125 (2022). DOI: 10.1016/j.heliyon.2022.e09125.
  • V. Kalem, Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum, Ceram Int. 37, 1265 (2011). DOI: 10.1016/j.ceramint.2010.12.003.
  • S. I. Hussein et al., Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction, J. Magn. Magn. Mater. 379, 9 (2015). DOI: 10.1016/j.jmmm.2014.11.079.
  • P. B. Kumar, S. Bhupender Rawal, and K. M. Rajan, Characterisation of high porous PZT piezoelectric ceramics by different techniques, Def. Sci. J. 68 (5), 500 (2018). DOI: 10.14429/dsj.68.12315.
  • P. Marechal, F. Levassort, and M. Lethiecq, Electroacoustic response at the focal point of a focused transducer as a function of the acoustical properties of the lens, presented at the 5th World Congress on Ultrasonics WCU 2003, Paris, France, 7–10 Sep. 2003.
  • S. F. Mansour et al., Structure, ferroelectric and mechanical performance of polycrystalline gadolinium-doped lead lanthanum zirconate titanate ceramics, presented at the 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM), Atlanta, GA, USA, 7–11 May 2017, pp. 63–67. DOI: 10.1109/ISAF.2017.8000213.
  • Z. Zhang et al., Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer, Sens. Actuator A Phys. 283, 273 (2018). DOI: 10.1016/j.sna.2018.09.067.
  • Q. Zhang et al., Miniature transducer using PNN-PZT-based ceramic for intravascular ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 (6), 1102 (2019). DOI: 10.1109/TUFFC.2019.2906652.
  • E. Mercadelli, A. Sanson, and C. Galassi, Porous Piezoelectric Ceramics (InTech Open, London, UK, 2010).
  • S. P. Yadav, S. A. Kanade, and K. V. Chandekar, Electrical and dielectric properties of lead, Int. J. Aquat. Sci. 12 (2), 2554 (2021).
  • R. Yimnirun et al., Mechanical properties of xPMN-(1-x) PZT ceramic systems, CMU J. 3 (2), 147 (2004).
  • R. Wang et al., Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary, J. Am. Ceram. Soc. 98 (7), 2177 (2015). DOI: 10.1111/jace.13604.
  • P. Gowdhaman, K. Antonyraj, and V. Annamalai, An effective approach on physical and dielectric properties of PZT-PVDF composites, Int. J. Adv. Sci. Res. 1 (8), 322 (2015). DOI: 10.7439/ijasr.
  • L. A. Ivan et al., Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT materials for composite bimorph actuators, Rev. Adv. Mater. Sci. 24 (1–2), 1 (2010).
  • Z. Cao et al., Preparation and the temperature dependence of electromechanical properties of Ca2+-W6+ co-doped Pb(Zr,Ti)O3 ceramics, J. Alloys Compd. 496 (1–2), 13 (2010). DOI: 10.1016/j.jallcom.2010.01.076.
  • H. S. Hsu et al., PMN-PT-PZT composite films for high frequency ultrasonic transducer applications, Sens. Actuators A Phys. 179, 121 (2012). DOI: 10.1016/j.sna.2012.02.031.
  • S. Zhang et al., Relaxor-PbTiO3 single crystals for various applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (8), 1572 (2013). DOI: 10.1109/TUFFC.2013.2737.
  • T. Li et al., A new Pb(Lu1/2Nb1/2)O3-PbZrO3-PbTiO3 ternary solid solution with morphotropic region and high Curie temperature, Ceram. Int. 39 (4), 3577 (2013). DOI: 10.1016/j.ceramint.2012.10.184.
  • H. Tang et al., Investigation of dielectric and piezoelectric properties in Pb(Ni1/3Nb2/3)O3-PbHfO3-PbTiO3 ternary system, J. Eur. Ceram. Soc. 33 (13–14), 2491 (2013). DOI: 10.1016/j.jeurceramsoc.2013.04.010.
  • E. K. Akdoğan, Piezoelectric and Acoustic Materials for Transducer Applications (Springer, New York, NY, 2008).
  • Y. Qin et al., Domain structure of potassium-sodium niobate ceramics before and after poling, J. Am. Ceram. Soc. 98 (3), 1027 (2015). DOI: 10.1111/jace.13373.
  • A. Mirzaei, M. Bonyani, and S. Torkian, Synthesis and characterization of nanocrystalline PZT powders: From sol to dense ceramics, Process. Appl. Ceram. 10 (1), 9 (2016). DOI: 10.2298/PAC1601009M.
  • S. Zhang et al., Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – A review, Prog. Mater. Sci. 68, 1 (2015). DOI: 10.1016/j.pmatsci.2014.10.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.