40
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Spectral, optical, and thermal analyses of tris-(thiourea) zinc sulfate nonlinear optical crystals

ORCID Icon, & ORCID Icon
Pages 167-175 | Received 13 May 2023, Accepted 20 Jul 2023, Published online: 28 Nov 2023

References

  • M. Rajkumar, and A. Chandramohan, Synthesis, spectral, thermal, mechanical and structural characterization of NLO active organic salt crystal: 3, 5-dimethylpyrazolium-3-nitrophthalate, Mater. Lett. 181, 354 (2016). DOI: 10.1016/j.matlet.2016.04.191.
  • M. Manivannan, and M. Jose, Growth of high-quality DSTMS single crystals with enhanced optical properties for photonic applications, J. Electron. Mater. 50 (3), 1221 (2021). DOI: 10.1007/s11664-020-08664-z.
  • N. Sheen Kumar, and S. L. Rayar, Synthesis, crystal growth and characterization of semi-organic NLO materials: L-valine copper chloride as optoelectronic sensor, Indian J. Phys. 96 (1), 79 (2022). DOI: 10.1007/s12648-020-01946-6.
  • K. Xu et al., Crystal growth and characterization of optical, thermal and electrical properties of organic NLO crystal OHB-T, J. Cryst. Growth 547, 125757 (2020). DOI: 10.1016/j.jcrysgro.2020.125757.
  • C. Karnan et al., Growth, optical, thermal, mechanical, laser damage threshold and electrical polarizability of cadmium chloride doped L-alanine (LACC) single crystal for optoelectronic applications, J. Electron. Mater. 48 (12), 7915 (2019). DOI: 10.1007/s11664-019-07630-8.
  • H. M. Albert, and C. Alosious Gonsago, Crystallization and characterization of 2l-histidinium·2maleate·3H2O and l-histidinium·glutarate·H2O organic crystals for frequency conversion applications, J. Electron. Mater. 51 (8), 4555 (2022). DOI: 10.1007/s11664-022-09712-6.
  • J. Jeyaram et al., Growth and characterization of organic second-order nonlinear optical (NLO) 4-chloroanilinium-l-tartrate monohydrate single crystals, J. Cryst. Growth 486, 96 (2018). DOI: 10.1016/j.jcrysgro.2018.01.015.
  • K. Kamatchi et al., Investigation on organic-inorganic hybrid NLO crystal L-valine potassium penta borate octa hydrate (LVPPB) for NLO applications, Optik 172, 674 (2018). DOI: 10.1016/j.ijleo.2018.07.054.
  • J. Chandrasekaran et al., Growth and characterization of l-histidine cadmium chloride monohydrate a semi-organic nonlinear optical crystals, Opt. Commun. 285 (8), 2096 (2012). DOI: 10.1016/j.optcom.2011.12.063.
  • S. Pal Rathee et al., Investigation on key properties of solution grown l-Leucine hydrobromide single crystal: a semi-organic NLO material, Mater. Sci. Eng. B 264, 114927 (2021). DOI: 10.1016/j.mseb.2020.114927.
  • R. Subhashini, S. Arjunan, and B. Gunasekaran, Synthesis of a metal coordinated amino acid-based nonlinear single crystal, bis (l-threonine)zinc(II) using the solution growth technique and its physicochemical properties, J. Phys. Chem. Solids 135, 109077 (2019). DOI: 10.1016/j.jpcs.2019.109077.
  • N. P. Rajesh et al., A new nonlinear optical semi-organic material: cadmium thiourea acetate, J. Cryst. Growth 262 (1-4), 561 (2004). DOI: 10.1016/j.jcrysgro.2003.10.064.
  • S. M. Azhar et al., Luminescence, laser induced nonlinear optical and surface microscopic studies of potassium thiourea chloride crystal, Optik 165, 259 (2018). DOI: 10.1016/j.ijleo.2018.03.098.
  • B. R. Srinivasan et al., Reinvestigation of growth of thiourea urea zinc sulfate crystal, Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 805 (2014). DOI: 10.1016/j.saa.2013.08.083.
  • S. Suresh, Studies on the optical and dielectric properties of a zinc thiourea chloride NLO single crystal, Optik 125 (3), 1223 (2014). DOI: 10.1016/j.ijleo.2013.07.154.
  • M. Anis et al., Synthesis, growth and optical studies of novel organometallic NLO crystal: calcium bis-thiourea chloride, Optik 127 (4), 2137 (2016). DOI: 10.1016/j.ijleo.2015.11.097.
  • P. M. Ushasree et al., Growth of bis (thiourea) cadmium chloride single crystals–a potential NLO material of organometallic complex, J. Cryst. Growth 218 (2-4), 365 (2000). DOI: 10.1016/S0022-0248(00)00593-5.
  • P. V. Raja Shekar et al., Investigations on surface and mechanical properties of bis-thiourea cadmium iodide –a non-linear optical crystal, Solid State Sci. 107, 106353 (2020). DOI: 10.1016/j.solidstatesciences.2020.106353.
  • N. R. Rajagopalan et al., Bis (thiourea) strontium chloride as promising NLO material: an experimental and theoretical study, Karb. Int. J. Modern Sci. 2 (4), 219 (2016). DOI: 10.1016/j.kijoms.2016.08.001.
  • G. Pabitha, and R. Dhanasekaran, Investigation on the linear and nonlinear optical properties of a metal organic complex–bis thiourea zinc acetate single crystal, Opt. Las. Technol. 50, 150 (2013). DOI: 10.1016/j.optlastec.2013.03.004.
  • R. Srineevasan, and R. Rajasekaran, Growth and optical studies of 2-aminopyridine bis thiourea zinc sulphate (2-APTZS) single crystals for NLO applications, J. Mol. Struct. 1048, 238 (2013). DOI: 10.1016/j.molstruc.2013.05.052.
  • N. Bhuvaneswari, K. Baskar, and R. Dhanasekaran, Growth and characterization of tris thiourea magnesium zinc sulphate single crystals, Optik 126 (23), 3731 (2015). DOI: 10.1016/j.ijleo.2015.08.246.
  • V. Revathi, K. Karthik, and H. Mahdizadeh, Antibacterial activity and physico-chemical properties of metal-organic single crystal: Zinc (Tris) thiourea chloride, Chem. Data Collect. 24, 100279 (2019). DOI: 10.1016/j.cdc.2019.100279.
  • B. Jalel et al., Synthesis and characterization of a metal-organic NLO material: Tetrakis (thiourea) cobalt chloride, J. Phys. Chem. Solids 133, 35 (2019). DOI: 10.1016/j.jpcs.2019.04.036.
  • G. D. Andreetti, L. Cavalca, and A. Musatti, The crystal and molecular structure of tris (thiourea) zinc(II) sulphate, Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 24 (5), 683 (1968). DOI: 10.1107/S056774086800302X.
  • H. M. Albert et al., Performance of ZnSO4 doped CeO2 nanoparticles and their antibacterial mechanism, Mater. Tod. Proceed. 47, 1030 (2021). DOI: 10.1016/j.matpr.2021.06.124.
  • P. M. Ushasree et al., Growth of zinc thiourea sulfate (ZTS) single crystals– a potential semiorganic NLO material, J. Cryst. Growth 197 (1-2), 216 (1999). DOI: 10.1016/S0022-0248(98)00906-3.
  • G. Herzberg, and B. L. Crawford, Jr, Infrared and Raman spectra of polyatomic molecules, J. Phys. Chem. 50 (3), 288 (1946). DOI: 10.1021/j150447a021.
  • V. V. Atuchin et al., Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12, Adv. Powd. Technol. 28 (5), 1309 (2017). DOI: 10.1016/j.apt.2017.02.019.
  • R. I. Castro et al., Thermal study and composition of edible oils combined by TG/DTG analysis through predictive statistical model, J. Therm. Anal. Calorim. 145 (1), 153 (2021). DOI: 10.1007/s10973-020-09693-w.
  • S. K. Kurtz, and T. T. Perry, A powder technique for the evaluation of nonlinear optical materials, J. Appl. Phys. 39 (8), 3798 (1968). DOI: 10.1063/1.1656857.
  • H. M. Albert, and C. A. Gonsago, Comparative studies on formation and material characterization of L-histidine derivatives for nonlinear optical device applications, J. Mater. Sci.: Mater. Electron. 33 (6), 2970 (2022). DOI: 10.1007/s10854-021-07495-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.