99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of heterostructure one-port SAW resonator with improved bandwidth using Si and LiNbO3 layer

ORCID Icon & ORCID Icon
Pages 132-142 | Received 15 May 2023, Accepted 26 Jul 2023, Published online: 28 Nov 2023

References

  • Q. Li et al., Characteristics of one-port surface acoustic wave resonator fabricated on ZnO/6H-SiC layered structure, J. Phys. D Appl. Phys. 51 (14), 145305 (2018). DOI: 10.1088/1361-6463/aab2c4.
  • T. Takai et al., High-performance SAW resonator with simplified LiTaO3/SiO2 double layer structure on Si substrate, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66 (5), 1006 (2019). DOI: 10.1109/TUFFC.2019.2898046.
  • Y. Yan et al., Wafer-scale fabrication of 42° rotated Y-cut LiTaO3-on-insulator (LTOI) substrate for a SAW resonator, ACS Appl. Electron. Mater. 1 (8), 1660 (2019). DOI: 10.1021/acsaelm.9b00351.
  • H. Xu et al., Large-range spurious mode elimination for wideband SAW filters on LiNbO3/SiO2/Si platform by LiNbO3 Cut angle modulation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 69 (11), 3117 (2022). DOI: 10.1109/TUFFC.2022.3152010.
  • Z. Chen et al., Hybrid full-wave analysis of surface acoustic wave devices for accuracy and fast performance prediction, Micromachines 12 (1), 5 (2020). DOI: 10.3390/mi12010005.
  • Z. Lu et al., High-frequency and high-temperature stable surface acoustic wave devices on ZnO/SiO2/SiC structure, J. Phys. D: Appl. Phys. 53 (30), 305102 (2020). DOI: 10.1088/1361-6463/ab8324.
  • A. K. Nagmani, B. K. Turuk, and B. Behera, Simulation and optimization of the geometrical structure of a one-port SAW resonator using FEM, presented at the AIP conference proceedings, vol. 2341, p. 020043. AIP Publishing LLC; 2021.
  • A. K. Nagmani, and B. Behera, A review on high-temperature piezoelectric crystal La 3 Ga 5 SiO 14 for sensor applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 69 (3), 918 (2022). DOI: 10.1109/TUFFC.2022.3143666.
  • R. Su et al., Enhanced performance of ZnO/SiO2/Al2O3 surface acoustic wave devices with embedded electrodes, ACS Appl. Mater. Interfaces. 12 (37), 42378 (2020). DOI: 10.1021/acsami.0c12055.
  • J. Shen et al., Structure with thin SiOx/SiNx bilayer and Al electrodes for high-frequency, large-coupling, and low-cost surface acoustic wave devices, Ultrasonics 115, 106460 (2021). DOI: 10.1016/j.ultras.2021.106460.
  • A. Kochhar et al., X-cut lithium niobate-based shear horizontal resonators for radio frequency applications, J. Microelectromech. Syst. 29 (6), 1464 (2020). DOI: 10.1109/JMEMS.2020.3026167.
  • T. H. Hsu, K. J. Tseng, and M. H. Li, Large coupling acoustic wave resonators based on LiNbO3/SiO2/Si functional substrate, IEEE Electron Device Lett. 41 (12), 1825 (2020). DOI: 10.1109/LED.2020.3030797.
  • R. Su et al., Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO3/SiO2/Si structure, IEEE Electron Device Lett. 42 (3), 438 (2021). DOI: 10.1109/LED.2021.3051298.
  • S. Fu et al., High-frequency surface acoustic wave devices based on ZnO/SiC layered structure, IEEE Electron Device Lett. 40 (1), 103 (2019). DOI: 10.1109/LED.2018.2881467.
  • B. K. Turuk, and B. Behera, Finite element simulation and characterization of one-port heterostructured surface acoustic wave resonator, Ferroelectrics 583 (1), 33 (2021). DOI: 10.1080/00150193.2021.1980344.
  • J. C. Asseko Ondo et al., FEM modeling of the temperature influence on the performance of SAW sensors operating at gigahertz frequency range and at high temperature up to 500 C, Sensors 20 (15), 4166 (2020). DOI: 10.3390/s20154166.
  • B. K. Turuk, and B. Behera, Investigation to various parameters of a multi-layered one port surface acoustic wave resonator, Mater. Today Proc. 56, 883 (2022). DOI: 10.1016/j.matpr.2022.02.527.
  • H. Zhang, and H. Wang, Investigation of surface acoustic wave propagation characteristics in new multilayer structure: SiO2/IDT/LiNbO3/Diamond/Si, Micromachines 12 (11), 1286 (2021). DOI: 10.3390/mi12111286.
  • S. Yandrapalli et al., Study of thin film LiNbO3 laterally excited bulk acoustic resonators, J. Microelectromech. Syst. 31 (2), 217 (2022). DOI: 10.1109/JMEMS.2022.3143354.
  • A. S. Koigerov, Modern physical-mathematical models and methods for design surface acoustic wave devices: COM based P-matrices and FEM in COMSOL, Mathematics 10 (22), 4353 (2022). DOI: 10.3390/math10224353.
  • B. K. Turuk, and B. Behera, Frequency sensitivity performance analysis of single-layer and multi-layer SAW-based sensor using finite element method, in Nanomanufacturing Nanomaterials Design, eds. S. Singh et al. (CRC Press, Boca Raton, 2023), pp. 149–163.
  • H. P. Kesuma et al., Scattering matrix approach to design of one-port surface acoustic wave resonator sensors utilizing reflectors as the sensing element, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68 (4), 1418 (2021). DOI: 10.1109/TUFFC.2020.3031583.
  • Q. Xie et al., Theoretical analysis of high electromechanical coupling surface acoustic wave propagating on lead-free Na0. 5Bi0. 5TiO3–BaTiO3 single crystal, Scr. Mater. 178, 372 (2020). DOI: 10.1016/j.scriptamat.2019.12.005.
  • Y. Liu et al., Materials, design, and characteristics of bulk acoustic wave resonator: A review, Micromachines 11 (7), 630 (2020). DOI: 10.3390/mi11070630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.