116
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigations on structural, morphological, dielectric, and ferroelectric properties of BiFeO3/BiMnO3 composite ceramics prepared via sol–gel synthesis route

, , &
Pages 67-80 | Received 06 Jun 2023, Accepted 25 Jul 2023, Published online: 28 Nov 2023

References

  • W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (7104), 759 (2006). DOI: 10.1038/nature05023.
  • M. M. Vopson, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State Mater. Sci. 40 (4), 223 (2015). DOI: 10.1080/10408436.2014.992584.
  • R. Gupta and R. K. Kotnala, A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications, J. Mater. Sci. 57 (27), 12710 (2022). DOI: 10.1007/s10853-022-07377-4.
  • C. Lu et al., Single-phase multiferroics: new materials, phenomena, and physics, Natl. Sci. Rev. 6 (4), 653 (2019). DOI: 10.1093/nsr/nwz091.
  • J. Silva et al., BiFeO3: a review on synthesis, doping and crystal structure, Integr. Ferroelectr. 126 (1), 47 (2011). DOI: 10.1080/10584587.2011.574986.
  • S. Dong and J. M. Liu, Recent progress of multiferroic perovskite manganites, Mod. Phys. Lett. B 26 (09), 1230004 (2012). DOI: 10.1142/S0217984912300049.
  • Y. Chen et al., Light-induced modulation in resistance switching of carbon nanotube/BiFeO3/Pt heterostructure, Integr. Ferroelectr. 134 (1), 58 (2012). DOI: 10.1080/10584587.2012.664985.
  • E. Dubovik, V. Fridkin, and D. Dimos, The bulk photovoltaic effect in ferroelectric Pb(Zr, Ti)O3 thin films, Integr. Ferroelectr. 8 (3–4), 285 (1995). DOI: 10.1080/10584589508219662.
  • W. A. Wani, H. Venkataraman, and K. Ramaswamy, Connecting electrical current conduction and Urbach energy in doped BiFeO3 thin-films, Mater. Chem. Phys. 298, 127468 (2023). DOI: 10.1016/j.matchemphys.2023.127468.
  • S. Ahmed, S. K. Barik, and S. Hajra, Investigation of electric, dielectric, and magnetic properties of Li + 1 and Mo + 6 co-doped BiFeO3, Appl. Phys. A 125 (5), 1 (2019). DOI: 10.1007/s00339-019-2617-6.
  • W. A. Wani et al., Structural, morphological, optical and dielectric investigations in cobalt doped bismuth ferrite nanoceramics prepared using the sol-gel citrate precursor method, J. Alloys Compd. 846, 156334 (2020). DOI: 10.1016/j.jallcom.2020.156334.
  • S. Hanif et al., Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique, Results Phys. 7, 3190 (2017). DOI: 10.1016/j.rinp.2017.08.061.
  • M. Grizalez et al., Magnetic and electrical properties of BiMnO3 thin films, Phys. Status Solidi Curr. Top. Solid State Phys. 4 (11), 4203 (2007). DOI: 10.1002/pssc.200675927.
  • Z. H. Chi et al., Room-temperature ferroelectric polarization in multiferroic BiMnO3, J. Magn. Magn. Mater. 310, 2006 (2007).
  • I. Fujii et al., Ferroelectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BiFeO3 ceramics, J. Mater. Res. 31 (1), 28 (2016). DOI: 10.1557/jmr.2015.315.
  • S. O. Leontsev and R. E. Eitel, Origin and magnitude of the large piezoelectric response in the lead-free (1–x)BiFeO3–xBaTiO3 solid solution, J. Mater. Res. 26 (1), 9 (2011). DOI: 10.1557/jmr.2010.44.
  • B. S. Kar, M. N. Goswami, and P. C. Jana, Effects of lanthanum dopants on dielectric and multiferroic properties of BiFeO3–BaTiO3 ceramics, J. Alloys Compd. 861, 157960 (2021). DOI: 10.1016/j.jallcom.2020.157960.
  • G. Mowla et al., Structural, electrical, and magnetic characterization of (1-x)BaTiO3-x Ni0.6Zn0.4Fe2O4 multiferroic ceramic composites, Eng. Res. 3, 133 (2021).
  • Z. Hu et al., Effects of Nd and high-valence Mn co-doping on the electrical and magnetic properties of multiferroic ceramics, Solid State Commun. 150 (23–24), 1088 (2010). DOI: 10.1016/j.ssc.2010.03.015.
  • C. X. Li et al., Enhanced multiferroic and magnetocapacitive properties of (1 − x)Ba0.7Ca0.3TiO3–xBiFeO3 Ceramics, J. Am. Ceram. Soc. 97 (3), 816 (2014). DOI: 10.1111/jace.12702.
  • N. S. B. Satar et al., Facile green synthesis of yttrium-doped BiFeO3 with highly efficient photocatalytic degradation towards methylene blue, Ceram. Int. 45 (13), 15964 (2019). DOI: 10.1016/j.ceramint.2019.05.105.
  • W. Ahmad et al., Tunable bandgap in cobalt doped bismuth ferrite nanoceramics: The role of annealing temperature, Mater. Sci. Eng. B 271, 115299 (2021). DOI: 10.1016/j.mseb.2021.115299.
  • B. Dhanalakshmi et al., Enhanced magnetic and magnetoelectric properties of Mn doped multiferroic ceramics, Ceram. Int 43 (12), 9272 (2017). DOI: 10.1016/j.ceramint.2017.04.085.
  • S. E. Ali, Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3, J. Electroceram. 48 (2), 95 (2022). DOI: 10.1007/s10832-021-00276-1.
  • W. A. Wani et al., Optimizing phase formation of BiFeO3 and Mn-doped BiFeO3 nanoceramics via thermal treatment using citrate precursor method, SN Appl. Sci. 2 (12), 1969 (2020). DOI: 10.1007/s42452-020-03669-z.
  • M. Azuma et al., Magnetic and structural properties of BiFe1−xMnxO3, J. Magn. Magn. Mater 310 (2), 1177 (2007). DOI: 10.1016/j.jmmm.2006.10.287.
  • W. A. Wani et al., Significantly reduced leakage current density in Mn-doped BiFeO3 thin films deposited using spin coating technique, J. Phys. Conf. Ser. 2070 (2021).
  • Z. Pei et al., Structural characterization, dielectric, magnetic and optical properties of double perovskite Bi2FeMnO6 ceramics, J. Magn. Magn. Mater. 508, 166891 (2020). DOI: 10.1016/j.jmmm.2020.166891.
  • P. K. Gupta et al., Study of band structure, transport and magnetic properties of BiFeO3–TbMnO3 composite, SN Appl. Sci. 1 (12), 1–11 (2019). DOI: 10.1007/s42452-019-1640-8.
  • S. Chandel et al., Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics, Ceram. Int. 43 (16), 13750 (2017). DOI: 10.1016/j.ceramint.2017.07.088.
  • K. Min et al., Oxygen-vacancy-related dielectric relaxation in BiFeO3 ceramics, Ferroelectrics 450 (1), 42 (2013). DOI: 10.1080/00150193.2013.838474.
  • A. V. Pashchenko et al., Control of dielectric properties in bismuth ferrite multiferroic by compacting pressure, Mater. Chem. Phys. 258, 123925 (2021). DOI: 10.1016/j.matchemphys.2020.123925.
  • H. Wu, and X. Zhu, Microstructures, magnetic, and dielectric properties of Ba-doped BiFeO3 nanoparticles synthesized via molten salt route, J. Am. Ceram. Soc. 102 (8), 4698 (2019). DOI: 10.1111/jace.16348.
  • M. Abushad et al., Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method, Ceram. Int. 45 (6), 7437 (2019). DOI: 10.1016/j.ceramint.2019.01.035.
  • D. K. Pradhan et al., Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024120 (2009).
  • N. Sharma, A. Gaur, and U. Kr Gaur, Multiferroic behavior of nanocrystalline BaTiO3 sintered at different temperatures, Ceram. Int. 40 (10), 16441 (2014). DOI: 10.1016/j.ceramint.2014.07.153.
  • M. Ajmal et al., Influence of sintering time on the structural, electrical and magnetic properties of polycrystalline Cu0.6Zn0.4Fe2O4 ferrites, J. Alloys Compd. 508 (1), 226 (2010). DOI: 10.1016/j.jallcom.2010.08.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.