46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy storage properties of KNb0.6Ta0.4O3 modified (Na0.5Bi0.5)0.7Sr0.3TiO3 ceramics

, , &
Pages 1-7 | Received 30 May 2023, Accepted 23 Jul 2023, Published online: 28 Nov 2023

References

  • H. Wang et al., Enhanced energy density and discharged efficiency of lead-free relaxor (1-x) [(Bi0.5Na0.5)0.94Ba0.06], 0.98La0.02TiO3-xKNb0.6Ta0.4O3 ceramic capacitors, Chem. Eng. J. 394, 124879 (2020). DOI: 10.1016/j.cej.2020.124879.
  • X. Jiang et al., Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3, J. Eur. Ceram. Soc. 39 (4), 1103 (2019). DOI: 10.1016/j.jeurceramsoc.2018.11.025.
  • D. Li et al., Achieved ultrahigh energy storage properties and outstanding charge–discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based ceramics by introducing a linear additive, Chem. Eng. J. 392, 123729 (2020). DOI: 10.1016/j.cej.2019.123729.
  • Z. Xu, J. Wang, and Y. Chen, Effects of Mn andY co-doping on the energy storage properties of Ba0.67Sr0.33TiO3 films, J. Mater. Sci. Mater. Electron. 32 (4), 4885 (2021). DOI: 10.1007/s10854-020-05228-z.
  • S. Zhou et al., Dielectric temperature stability and energy storage performance of NBT-based ceramics by introducing high-entropy oxide, J. Am. Ceram. Soc. 105 (7), 4796 (2022). DOI: 10.1111/jace.18455.
  • H. Qiang, L. Deng, and Z. Xu, Achieving Enhanced Energy-Storage Performances in Bi0.5(K0.15Na0.85)0.5TiO3 Ceramics Modified by Sr(Ti0.85Zr0.15)O3, Phys. Status Solidi (A) 219 (11), 2200071 (2022). DOI: 10.1002/pssa.202200071.
  • Y. Zhao, X. Meng, and X. Hao, Synergistically achieving ultra high energy-storage density and efficiency in linear-like lead-based multilayer ceramic capacitor, Scr. Mater. 195, 113723 (2021). DOI: 10.1016/j.scriptamat.2021.113723.
  • L. Zhang et al., Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics, J. Eur. Ceram. Soc. 39 (10), 3057 (2019). DOI: 10.1016/j.jeurceramsoc.2019.02.004.
  • H. Qiang, and Z. Xu, Enhanced energy storage properties of La-doped Pb0.99Nb0.02(Zr0.85Sn0.13Ti0.02)0.98O3antiferroelectric ceramics, J. Mater. Sci. Mater. Electron. 31 (17), 14921 (2020). DOI: 10.1007/s10854-020-04053-8.
  • J. Gao et al., Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties, J. Mater. Chem. A 7 (5), 2225 (2019). DOI: 10.1039/C8TA09353A.
  • P. Butnoi et al., High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr, J. Eur. Ceram. Soc. 38 (11), 3822 (2018). DOI: 10.1016/j.jeurceramsoc.2018.04.024.
  • Y. Lin et al., Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale, ACS Appl. Mater. Interfaces. 11 (40), 36824 (2019). DOI: 10.1021/acsami.9b10819.
  • H. Qiang et al., Improved energy-storage performance of (1–x)[(Bi0.5Na0.5)0.94Ba0.06], 0.98La0.02TiO3–xBi(Mg0.5Zr0.5)O3 ceramics, J. Mater. Sci. Mater. Electron. 34, 108 (2023). DOI: 10.1007/s10854-022-09610-x.
  • Y. Xu et al., Enhanced energy-storage performance in silver niobate-based dielectric ceramics sintered at low temperature, J. Alloys Compd. 913, 165313 (2022). DOI: 10.1016/j.jallcom.2022.165313.
  • D. Wang et al., Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density, J. Mater. Chem. A 6 (9), 4133 (2018). DOI: 10.1039/C7TA09857J.
  • Z. Xia et al., Enhanced energy storage properties of Bi(Mg0.5Zr0.5)O3 modified Ba0.9Sr0.1TiO3 ceramics, Cryst. Res. Technol. 58 (2), 2200147 (2023). DOI: 10.1002/crat.202200147.
  • Y. Pu et al., High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1-y)SnyO3 ceramics, ACS Sustain. Chem. Eng. 6 (5), 6102 (2018). DOI: 10.1021/acssuschemeng.7b04754.
  • H. Qi, and R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency, J. Mater. Chem. A 7 (8), 3971 (2019). DOI: 10.1039/C8TA12232F.
  • J. Wu et al., Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage, Nano Energy 50, 723 (2018). DOI: 10.1016/j.nanoen.2018.06.016.
  • Z. Xu, and H. Qiang, Dielectric and piezoelectric properties of (1-x)Ba0.67Sr0.33TiO3-xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics, J. Sol-Gel Sci. Technol. 77 (3), 650 (2016). DOI: 10.1007/s10971-015-3895-x.
  • Z. Pan et al., Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors, J. Mater. Chem. C 7 (14), 4072 (2019). DOI: 10.1039/C9TC00087A.
  • Q. Li et al., Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modified(Bi0.5Na0.5)(0.94)Ba0.06TiO3 Tin lead-free ceramics, Ceram. Int. 16, 19822 (2019). DOI: 10.1016/j.ceramint.2019.06.237

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.