60
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesized cobalt substituted magnetite (CoxFe3-xO4) nanoparticles – evaluation of structural, optical, and magnetic properties for spintronics application

ORCID Icon & ORCID Icon
Pages 340-357 | Received 28 Jun 2023, Accepted 09 Sep 2023, Published online: 28 Nov 2023

References

  • J. M. D. M. Coey and C. L. Chien, Half-metallic ferromagnetic oxides, MRS Bull. 28 (10), 720 (2003). DOI: 10.1557/mrs2003.212.
  • A. Hirohata et al., Roadmap for emerging materials for spintronic device applications, IEEE Trans. Magn. 51 (10), 1 (2015). DOI: 10.1109/TMAG.2015.2457393.
  • V. H. Ojha and K. M. Kant, Strained CoFe2O4-amorphous SiO2 nanocomposites: evaluation of structural and magnetic properties, J. Magn. Magn. Mater. 544, 168448 (2022). DOI: 10.1016/j.jmmm.2021.168448.
  • T. Ozkaya et al., Synthesis of Fe33O4 nanoparticles at 100 °C and its magnetic characterization, J. Alloys Compd. 472 (1–2), 18 (2009). DOI: 10.1016/j.jallcom.2008.04.101.
  • A. N. Alqarni et al., Synthesis and design of vanadium intercalated spinal ferrite (Co0.5Ni0.5VxFe1.6−xO4) electrodes for high current supercapacitor applications, J. Energy Storage 51, 104357 (2022). DOI: 10.1016/j.est.2022.104357.
  • M. Ansari et al., Copper-substituted spinel Zn-Mg ferrite nanoparticles as potential heating agents for hyperthermia, J Am. Ceram. Soc. 101 (8), 3649 (2018). DOI: 10.1111/jace.15510.
  • Â. L. Andrade et al., Preparation of size-controlled nanoparticles of magnetite, J. Magn. Magn. Mater. 324 (10), 1753 (2012). DOI: 10.1016/j.jmmm.2011.12.033.
  • H. Rashid et al., Synthesis and characterization of magnetite nanoparticles with high selectivity using in-situ precipitation method, Sep. Sci. Technol. 55 (6), 1207 (2020). DOI: 10.1080/01496395.2019.1585876.
  • D. S. Nikam et al., Cation distribution, structural, morphological and magnetic properties of Co1-xZnxFe2O4 (x = 0–1) nanoparticles, RSC Adv. 5 (3), 2338 (2015). DOI: 10.1039/C4RA08342C.
  • M. Bohra and N. Agarwal, Nanostructured magnetite thin films: an avenue for spintronics, Front. Nanosci. 14, 121 (2019). DOI: 10.1016/B978-0-08-102572-7.00005-2.
  • A. Sutka and G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci. 6 (2), 128 (2012). DOI: 10.1007/s11706-012-0167-3.
  • W. M. Daoush, Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications, J. Nanomedicine Res. 5, 3 (2017). DOI: 10.15406/jnmr.2017.05.00118.
  • V. R. Bhagwat et al., Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 248, 114388 (2019). DOI: 10.1016/j.mseb.2019.114388.
  • V. S. Shinde, S. G. Dahotre, and L. N. Singh, Synthesis and characterization of aluminium substituted calcium hexaferrite, Heliyon 6 (1), e03186 (2020). DOI: 10.1016/j.heliyon.2020.e03186.
  • Z. I. Takai et al., Preparation and characterization of magnetite (Fe3O4) nanoparticles by sol-gel method, Int. J. Nanoelectron. Mater. 12, 37 (2019).
  • T. Dippong et al., Influence of Cu2+, Ni2+, and Zn2+ ions doping on the structure, morphology, and magnetic properties of co-ferrite embedded in SiO2 matrix obtained by an innovative sol-gel route, Nanomaterials 10 (3), 580 (2020). DOI: 10.3390/nano10030580.
  • M. Sorescu, A. Grabias, and L. Diamandescu, From magnetite to cobalt ferrite, J. Mater Synth. Process. 9, 120 (2001). DOI: 10.1023/A:1013241312932.
  • S. Kanagesan et al., Sol-gel auto-combustion synthesis of cobalt ferrite and it’s cytotoxicity properties, Dig. J. Nanomater. Biostructures 8, 1601 (2013).
  • S. D. Raut et al., Synthesis and characterization of magnetite and cobalt ferrite nanoparticles by sol-gel auto combustion technique, Int. J. Innov. Eng. Sci. 6 (10), 17 (2021). DOI: 10.46335/IJIES.2021.6.10.4.
  • A. R. Bhalekar and L. N. Singh, Structural, magnetic and ESR studies of Y3AlxFe5xO12 (0.0 ≤ x ≤ 1.2) nanoparticles synthesized by a sol-gel method, Phys. B Condens. Matter 570, 82 (2019). DOI: 10.1016/j.physb.2019.06.002.
  • A. R. Bhalekar and L. N. Singh, Structural and magnetic studies of Al-doped Y2.8La0.2Fe5O12 nanoferrites prepared by a sol-gel route, J. Supercond. Nov. Magn. 33 (6), 1859 (2020). DOI: 10.1007/s10948-020-05422-4.
  • A. I. Journal et al., Study of structural and magnetic properties of Ni substituted M type calcium hexaferrite, Integr. Ferroelectr. 213 (1), 122 (2021). DOI: 10.1080/10584587.2020.1859830.
  • B. Niu et al., Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys, Sci. Rep. 7, 3421 (2017). DOI: 10.1038/s41598-017-03644-6.
  • A. A. Velásquez and J. P. Urquijo, Influence of Co2+ on the structural and magnetic properties of substituted magnetites obtained by the coprecipitation method, Hyperfine Interact. 232 (1–3), 97 (2015). DOI: 10.1007/s10751-015-1122-3.
  • R. Sagayaraj et al., Tuning of ferrites (CoxFe3‑xO4) nanoparticles by co‑precipitation technique, SN Appl. Sci. 1 (3), 1 (2019). DOI: 10.1007/s42452-019-0244-7.
  • C. Parmar et al., Sol-gel auto-combustion synthesis of magnetite and its characterization via X-ray diffraction, AIP Conf. Proc. 2142, 160014 (2019). DOI: 10.1063/1.5122595.
  • S. Güner et al., Magneto-optical properties of Mn3+ substituted Fe3O4 nanoparticles, Ceram. Int., 41, 10915 (2015). DOI: 10.1016/j.ceramint.2015.05.034.
  • X. Wang et al., A review of Fe3O4 thin films: synthesis, modification and applications, J. Mater. Sci. Technol. 34 (8), 1259 (2018). DOI: 10.1016/j.jmst.2018.01.011.
  • H. Erdemi et al., Electrical properties of Cu substituted Fe3O4 nanoparticles, J. Supercond. Nov. Magn. 29 (2), 389 (2016). DOI: 10.1007/s10948-015-3270-8.
  • M. A. Almessiere et al., Impact of La3+ and Y3+ ion substitutions on structural, magnetic and microwave properties of Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites synthesized via sonochemical route, RSC Adv. 9 (53), 30671 (2019). DOI: 10.1039/c9ra06353f.
  • M. Amir et al., Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles, Superlattices Microstruct. 88, 450 (2015). DOI: 10.1016/j.spmi.2015.10.005.
  • B. Jeevanantham et al., Structural and optical characteristics of cobalt ferrite nanoparticles, Mater. Lett. X 12, 100105 (2021). DOI: 10.1016/j.mlblux.2021.100105.
  • D. Yuliantika, A. Taufiq, A. Hidayat,   Sunaryono, N. Hidayat, S. Soontaranon, Exploring structural properties of cobalt ferrite nanoparticles from natural sand, IOP Conf. Ser. Mater. Sci. Eng. 515, 012047 (2019). DOI: 10.1088/1757-899X/515/1/012047.
  • M. Amir et al., Polyol synthesis of Mn3+ substituted Fe3O4 nanoparticles: cation distribution, structural and electrical properties, Superlattices Microstruct. 85, 747 (2015). DOI: 10.1016/j.spmi.2015.07.001.
  • S. Anjum and A. Masud, Structural and temperature dependent dielectric properties of tin substituted cobalt ferrites (SnxCo1-xFe2O4), Dig. J. Nanomater. Biostructures 13, 1063 (2018).
  • S. D. Birajdar et al., Sol-gel auto combustion synthesis, structural and magnetic properties of Mn doped ZnO nanoparticles, Procedia Manuf. 20, 174 (2018). DOI: 10.1016/j.promfg.2018.02.025.
  • B. Ünal et al., Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite, J. Rare Earths 38 (10), 1103 (2020). DOI: 10.1016/j.jre.2019.09.011.
  • R. Tiwari et al., Structural and magnetic properties of tailored NiFe2O4 nanostructures synthesized using auto-combustion method, Results Phys. 16, 102916 (2020). DOI: 10.1016/j.rinp.2019.102916.
  • K. R. Krishna et al., Synthesis, XRD & SEM studies of zinc substitution in nickel ferrites by citrate gel technique, World J. Condens. Matter Phys. 2 (3), 153 (2012). DOI: 10.4236/wjcmp.2012.23025.
  • M. Kumar et al., Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities, J. Taibah Univ. Sci. 13 (1), 280 (2019). DOI: 10.1080/16583655.2019.1565437.
  • P. Makuła, M. Pacia, and W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra, J. Phys. Chem. Lett. 9 (23), 6814 (2018). DOI: 10.1021/acs.jpclett.8b02892.
  • W. W. R. Araujo et al., Magnetic, Structural and cation distribution studies on $ FeO\cdot Fe_ {(2-x)} Nd_ {x} O_ {3} $($ x= 0.00, 0.02, 0.04, 0.06\text {and} 0.1$) nanoparticles, Eur. Phys. J. E 42 (12), 1 (2019). DOI: 10.1140/epje/i2019-11917-5.
  • L. S. Ganapathe et al., Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation, Magnetochemistry 6 (4), 68 (2020). DOI: 10.3390/magnetochemistry6040068.
  • M. Amir et al., Magneto-optical investigation and hyperfine interactions of copper substituted Fe3O4 nanoparticles, Ceram. Int. 42 (5), 5650 (2016). DOI: 10.1016/j.ceramint.2015.12.089.
  • S. Singh and N. Goswami, Structural, optical, magnetic and dielectric properties of magnetite (Fe3O4) nanoparticles prepared by exploding wire technique, J. Mater. Sci. Mater. Electron. 32 (22), 26857 (2021). DOI: 10.1007/s10854-021-07062-3.
  • J. M. Soares et al., Magnetic couplings in CoFe2O4/FeCo–FeO core–shell nanoparticles, J. Magn. Magn. Mater. 374, 192 (2015). DOI: 10.1016/j.jmmm.2014.08.015.
  • M. A. Almessiere et al., Ce–Nd Co-substituted nanospinel cobalt ferrites: an investigation of their structural, magnetic, optical, and apoptotic properties, Ceram. Int., 45, 16147 (2019). DOI: 10.1016/j.ceramint.2019.05.133.
  • M. Z. Ullah Shah et al., A novel TiO2/CuSe based nanocomposite for high-voltage asymmetric supercapacitors, J. Sci. Adv. Mater. Devices 7 (2), 100418 (2022). DOI: 10.1016/j.jsamd.2022.100418.
  • G. Han et al., Structure and magnetic properties of cobalt ferrite foam with low mass density, J. Alloys Compd. 790, 947 (2019). DOI: 10.1016/j.jallcom.2019.03.157.
  • M. Sertkol et al., Effect of Bi3 + ions substitution on the structure, morphology, and magnetic properties of Co–Ni spinel ferrite nanofibers, Mater. Chem. Phys. J. 284, 1 (2022).
  • H. Soleimani et al., Influence of cobalt substitution on the structural and magnetic properties of cobalt substituted magnetite, AIP Conf. Proc., 1787, 050008 (2016). DOI: 10.1063/1.4968106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.