57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of structural, electronic and optoelectronic properties of the Half Heusler LiMgZ (Z = N, P or Sb) materials: DFT and TDDFT approaches

, &
Pages 241-255 | Received 16 Jun 2023, Accepted 06 Aug 2023, Published online: 28 Nov 2023

References

  • M. Mouatassime et al., Magnetic properties and half metallic behavior of the full-Heusler Co2FeGe alloy: DFT and Monte Carlo studies, J. Solid State Chem. 304, 122534 (2021). DOI: 10.1016/j.jssc.2021.122534.
  • S. Idrissi et al., Critical magnetic behavior of the half Heusler alloy RhCrSi: Monte Carlo study, Ferroelectr. Lett. Sect. 49 (1–3), 6 (2022). DOI: 10.1080/07315171.2022.2076468.
  • Y. S. Wudil et al., Thermal conductivity of PLD-grown thermoelectric Bi2Te2.7Se0.3 films using temperature-dependent Raman spectroscopy technique, Ceram. Int. 46 (6), 7253 (2020). DOI: 10.1016/j.ceramint.2019.11.219.
  • G. Omer et al., Smart thermoelectric waste heat generator: Design, simulation and cost analysis, Sustain. Energy Technol. Assess. 37, 100623 (2020). DOI: 10.1016/j.seta.2019.100623.
  • T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications, Phys. Rev. B 82 (12), 125210 (2010). DOI: 10.1103/PhysRevB.82.125210.
  • A. Roy et al., Half-Heusler semiconductors as piezoelectrics, Phys. Rev. Lett. 109 (3), 037602 (2012). DOI: 10.1103/PhysRevLett.109.037602.
  • Q. Ren et al., Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials, Nat. Commun. 11 (1), 3142 (2020). DOI: 10.1038/s41467-020-16913-2.
  • Y. Nakajima et al., Topological R PdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors, Sci. Adv. 1 (5), e1500242 (2015). DOI: 10.1126/sciadv.1500242.
  • H. Lin et al., Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9 (7), 546 (2010). DOI: 10.1038/nmat2771.
  • X. Shi, L. Chen, and C. Uher, Recent advances in high-performance bulk thermoelectric materials, Int. Mater. Rev. 61 (6), 379 (2016). DOI: 10.1080/09506608.2016.1183075.
  • M. Shakil et al., Structural, electronic, magnetic and thermoelectric properties of full Heusler alloys Co2YZ (Z = S, Ge, Se): a first principles calculation, Physica B Condens. Matter. 602, 412558 (2021). DOI: 10.1016/j.physb.2020.412558.
  • R. M. Sattigeri, S. B. Pillai, and P. K. Jha, A first-principles investigation of topological phase transition in half-Heusler LiMgSb driven by volume expansive pressure, AIP Conf, Proc 2265, 030020 (2020).
  • L. Lin et al., Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode, J. Mater. Sci. 54 (10), 7789 (2019). DOI: 10.1007/s10853-018-03258-x.
  • Z. Yang et al., Opto-electric investigation for Si/organic heterojunction single-nanowire solar cells, Sci. Rep. 7 (1), 14575 (2017). DOI: 10.1038/s41598-017-15300-0.
  • Z. Hou et al., Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal, Appl. Phys. Lett. 107, 202103 (2015).
  • M. Javed et al., Structural and mechanical stability, lattice dynamics and electronic structure of the novel CrVZ (Z = S, Se, & Te) half-Heusler alloys, Mater. Today Commun. 25, 101519 (2020). DOI: 10.1016/j.mtcomm.2020.101519.
  • M. A. A. Mohamed et al., Tuning of the electronic and phononic properties of NbFeSb half-Heusler compound by Sn/Hf co-doping, Acta Mater. 196, 669 (2020). DOI: 10.1016/j.actamat.2020.07.028.
  • N. S. Chauhan et al., Defect engineering for enhancement of thermoelectric performance of (Zr, Hf) NiSn-based n-type half-Heusler alloys, J. Phys. Chem. C 124 (16), 8584–8593 (2020).
  • P. BroˇzIn et al., TOFA 2020 - 17th Discussion Meeting on Thermodynamics of Alloys. 2020.
  • C. S. Birkel et al., Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds, Chem. Mater. 24 (13), 2558 (2012). DOI: 10.1021/cm3011343.
  • A. Beleanu et al., Systematical, experimental investigations on LiMgZ (Z = P, As, Sb) wide band gap semiconductors, J. Phys. D: Appl. Phys. 44 (47), 475302 (2011). DOI: 10.1088/0022-3727/44/47/475302.
  • J.-Y. Qiu et al., Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation, Rare Met. 41 (6), 2074 (2022). DOI: 10.1007/s12598-021-01929-4.
  • O. PIsikaku-Ironkwe, Possible High-Tc Superconductivity in LiMgN: A MgB2-like Material, Arxiv 1204, 5389 (2012).
  • K. Kuriyama, and K. Kushida, Raman scattering from the ordered filled tetrahedral semiconductor LiMgP, Solid State Commun. 112 (8), 429 (1999). DOI: 10.1016/S0038-1098(99)00369-5.
  • K. Kuriyama et al., Raman scattering from the filled tetrahedral semiconductor LiMgN: Identification of the disordered arrangement between Li and Mg, Phys. Rev. B 75 (23), 233204 (2007). DOI: 10.1103/PhysRevB.75.233204.
  • K. Kuriyama, and K. Kushida, Band edge and phonon-assisted deep level emissions in the ordered filled tetrahedral semiconductor LiMgP, J. Appl. Phys. 87 (5), 2303 (2000). DOI: 10.1063/1.372178.
  • D. Kieven et al., I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81 (7), 075208 (2010). DOI: 10.1103/PhysRevB.81.075208.
  • K. Kuriyama, K. Kushida, and R. Taguchi, Optical band gap of the ordered filled-tetrahedral semiconductor LiMgP, Solid State Commun. 108 (7), 429 (1998). DOI: 10.1016/S0038-1098(98)00384-6.
  • F. Kalarasse, B. Bennecer, and A. Mellouki, Optical properties of the filled tetrahedral semiconductors LiMgX (X = N, P and As), J. Phys.: Condens. Matter. 18 (31), 7237 (2006). DOI: 10.1088/0953-8984/18/31/018.
  • M. Arif et al., Elastic and electro-optical properties of XYZ (X = Li, Na and K; Y = Mg; Z = N, P, As, Sb and Bi) compounds, Indian J. Phys. 90 (6), 639 (2016). DOI: 10.1007/s12648-015-0791-8.
  • M. Arif et al., Elastic and electro-optical properties of XYZ (X = Li, Na and K; Y = Mg; Z = N, P, As, Sb and Bi) compounds, Indian J. Phys. 90 (6), 639 (2016). DOI: 10.1007/s12648-015-0791-8.
  • S. Idrissi et al., Study of the electronic and opto-electronic properties of the perovskite KPbBr3 by DFT and TDDFT methods, Comput. Condens. Matter. 33, e00617 (2022). DOI: 10.1016/j.cocom.2021.e00617.
  • S. Idrissi et al., Structural, electronic, magnetic properties and critical behavior of the equiatomic quaternary Heusler alloy CoFeTiSn, Phys. Lett. A 384 (24), 126453 (2020). DOI: 10.1016/j.physleta.2020.126453.
  • S. Idrissi et al., Characterization of the Equiatomic Quaternary Heusler Alloy ZnCdRhMn: Structural, Electronic, and Magnetic Properties, J. Supercond. Nov. Magn. 33 (10), 3087 (2020). DOI: 10.1007/s10948-020-05561-8.
  • S. Idrissi et al., A Monte Carlo study of the Yttrium based Heusler alloys Y2CrGa and YFeCrGa, Journal of, MMMS 17 (3), 552 (2021). DOI: 10.1108/MMMS-09-2020-0221.
  • S. Idrissi et al., The critical magnetic behavior of the new Heusler CoXO2 alloys (X = Cu or Mn): Monte Carlo Study, Chin. J. Phys. 70, 312 (2021). DOI: 10.1016/j.cjph.2021.01.008.
  • P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B), B864 (1964). DOI: 10.1103/PhysRev.136.B864.
  • P. Giannouzzi et al., J. Phys.: Condens. Matter 21 2009 395502; URL, ‘‘http://www.Quantum-espresso.org’’.
  • D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43 (20), 1494 (1979). DOI: 10.1103/PhysRevLett.43.1494.
  • J. P. Perdew et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B Condens. Matter. 46 (11), 6671 (1992). DOI: 10.1103/physrevb.46.6671.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (12), 5188 (1976). DOI: 10.1103/PhysRevB.13.5188.
  • N. M. Nawi et al., An improved learning algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back propagation neural networks, presented at Sixth International Conference on Intelligent Systems Design and Applications, IEEE, p. 152–157, 2006.
  • K. Momma, and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (6), 1272 (2011). DOI: 10.1107/S0021889811038970.
  • K. Kuriyama et al., Growth and band gap of the filled tetrahedral semiconductor LiZnN, J. Cryst. Growth 198-199, 802 (1999). DOI: 10.1016/S0022-0248(98)00984-1.
  • H. Mehnane et al., First-principles study of new half Heusler for optoelectronic applications, Superlatt. Microstruct. 51 (6), 772 (2012). DOI: 10.1016/j.spmi.2012.03.020.
  • D. Kieven et al., I-II-V half-Heusler compounds for optoelectronics: ab initio calculations, Phys. Rev. B 81 (7), 075208 (2010). DOI: 10.1103/PhysRevB.81.075208.
  • K. Yabana, and G. F. Bertsch, Time-dependent local-density approximation in real time, Phys. Rev. B Condens. Matter. 54 (7), 4484 (1996). DOI: 10.1103/physrevb.54.4484.
  • J. Qiao et al., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5 (1), 4475 (2014). DOI: 10.1038/ncomms5475.
  • D. C. Hutchings et al., Kramers-Krönig relations in nonlinear optics, Opt. Quant. Electron. 24 (1), 1 (1992). DOI: 10.1007/BF01234275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.