75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Disadvantage of interaction between cellulose and a classical hydrogen-bonded ferroelectric of dimethylammonium aluminum sulfate hexahydrate

ORCID Icon, & ORCID Icon
Pages 256-265 | Received 19 Jun 2023, Accepted 08 Aug 2023, Published online: 28 Nov 2023

References

  • D. Zhao et al., Cellulose-based flexible functional materials for emerging intelligent electronics, Adv. Mater. 33 (28), e2000619 (2021). DOI: 10.1002/adma.202000619.
  • H. Abral et al., A simple strategy in enhancing moisture and thermal resistance and tensile properties of disintegrated bacterial cellulose nanopaper, J. Mater. Res. Technol. 9 (4), 8754 (2020). DOI: 10.1016/j.jmrt.2020.06.023.
  • Y. Zhang et al., Cellulose nanocrystals composites with excellent thermal stability and high tensile strength for preparing flexible resistance strain sensors, Carbohydr. Polym. Technol. Appl. 3, 100214 (2022). DOI: 10.1016/j.carpta.2022.100214.
  • N. Tarabanko et al., Electrical double layer as a model of interaction between cellulose and solid acid catalysts of hydrolysis, Chemphyschem 20 (5), 706 (2019). DOI: 10.1002/cphc.201801160.
  • J. R. Choi et al., Facile fabrication of ultrathin graphene/cellulose composites with efficient electromagnetic interference shielding by spray deposition, Mater. Lett. 341, 134264 (2023). DOI: 10.1016/j.matlet.2023.134264.
  • H. T. Nguyen, M. T. Chau, and P. T. B. Thao, Frequency response of a ferroelectric composite synthesized from cellulose nanoparticles and Rochelle salt, Integr. Ferroelectr. 230 (1), 91 (2022). DOI: 10.1080/10584587.2022.2102802.
  • H. T. Nguyen and P. T. B. Thao, A joint experimental and theoretical approach for investigation of structural contributions to ferroelectricity of nanocomposites from cellulose nanoparticles and glycine silver nitrate, Integr. Ferroelectr. 231 (1), 20 (2023). DOI: 10.1080/10584587.2022.2143197.
  • H. T. Nguyen, Fatigue and aging in a ferroelectric composite based on triglycine sulfate combined with nanocellulose, Integr. Ferroelectr. 232 (1), 9 (2023). DOI: 10.1080/10584587.2023.2173438.
  • H. Manjunatha et al., Applications of metal-organic frameworks (MOFs) and their derivatives in piezo/ferroelectrics, in Applications of Metal-Organic Frameworks and Their Derived Materials, edited by R. Inamuddin, M. I. Boddula, Ahamed and A. M. Asiri (Wiley, Toronto, 2020), pp 33–61. DOI: 10.1002/9781119651079.ch2.
  • L. Hu et al., Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C3N4 to FeMOFs-sCuO for neuron-specific enolase immunosensing, Biosens. Bioelectron. 226, 115132 (2023). DOI: 10.1016/j.bios.2023.115132.
  • L.-H. Cao et al., A multifunctional 3D chiral porous ferroelectric metal-organic framework for sensing small organic molecules and dye uptake, Chem. Asian J. 9 (11), 3094 (2014). DOI: 10.1002/asia.201402785.
  • W. Zhang and R.-G. Xiong, Ferroelectric metal-organic frameworks, Chem. Rev. 112 (2), 1163 (2012). DOI: 10.1021/cr200174w.
  • J. Varghese, R. W. Whatmore, and J. D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications, J. Mater. Chem. C. 1 (15), 2618 (2013). DOI: 10.1039/c3tc00597f.
  • L. Wang et al., Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis, Biotechnol. Bioeng. 93 (3), 443 (2006). DOI: 10.1002/bit.20730.
  • P. Lu, and Y.-L. Hsieh, Preparation and properties of cellulose nanocrystals: Rods, spheres, and network, Carbohydr. Polym. 82 (2), 329 (2010). DOI: 10.1016/j.carbpol.2010.04.073.
  • T. Fattahi Meyabadi et al., Spherical cellulose nanoparticles preparation from waste cotton using a green method, Powder Technol. 261, 232 (2014). DOI: 10.1016/j.powtec.2014.04.039.
  • G. Völkel et al., Dimethylammonium gallium sulfate hexahydrate and dimethylammonium aluminium sulfate hexahydrate—members of a crystal family with exceptional commensurate/incommensurate phase sequences, J. Phys: Condens. Matter. 17 (28), 4511 (2005). DOI: 10.1088/0953-8984/17/28/010.
  • D. Podsiadła et al., Optical spectroscopy of chromium doped deuterated (CH3)2NH2Al(SO4)2·6H2O crystals, J. Mol. Struct. 555 (1–3), 335 (2000). DOI: 10.1016/S0022-2860(00)00618-9.
  • J. Dolinšek et al., 1H and 27Al NMR study of the ferroelectric transition in dimethylammonium aluminum sulphate hexahydrate (CH3)2NH2Al(SO4)2·6H2O, Phys. Rev. B. 59 (5), 3460 (1999). DOI: 10.1103/PhysRevB.59.3460.
  • R. Hrabanski et al., EPR studies of the order-disorder phase transition in DMAAS crystal, Ferroelectrics. 291 (1), 241 (2003). DOI: 10.1080/00150190390222736.
  • N. M. Galiyarova, Critical slowing down of relaxing domain walls and interfaces in phase transition vicinities, Ferroelectrics. 170 (1), 111 (1995). DOI: 10.1080/00150199508014197.
  • V. H. Schmidt et al., Domain wall freezing in KDP-type ferroelectrics, J. Phys. Chem. Solids. 61 (2), 283 (2000). DOI: 10.1016/S0022-3697(99)00294-2.
  • Y. N. Huang et al., Domain freezing in potassium dihydrogen phosphate, triglycine sulfate, and CuAlZnNi, Phys. Rev. B. 55 (24), 16159 (1997). DOI: 10.1103/PhysRevB.55.16159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.