30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Theoretical investigations on the electronic structure and optical properties of orthorhombic Ce0.7Nd0.3AlO3 under pressure

, , , &
Pages 330-339 | Received 26 Jun 2023, Accepted 03 Sep 2023, Published online: 28 Nov 2023

References

  • M. E. A. Monir, and F. Z. Dahou, Structural, thermal, elastic, electronic and magnetic properties of cubic lanthanide based perovskites type oxides PrXO3 (X = V, Cr, Mn, Fe): insights from ab initio study, SN Appl. Sci. 2 (3), 465 (2020). DOI: 10.1007/s42452-020-2223-4.
  • H. A. R. Aliabad et al., Thermoelectric and phononic properties of (Gd,Tb)MnO3 compounds: DFT calculations, J. Alloys Compd. 690, 942 (2017). DOI: 10.1016/j.jallcom.2016.08.167.
  • M. Musa Saad H-E, and B. O. Alsobhi, Consequences of tuning rare-earth re3+-site and exchange-correlation energy U on the optoelectronic, mechanical, and thermoelectronic properties of cubic manganite perovskites REMnO3 for spintronics and optoelectronics applications, ACS Omega. 7 (32), 27903 (2022). DOI: 10.1021/acsomega.2c01511.
  • A. P. Sakhya et al., Electronic structure and optical properties of orthorhombic and rhombohedral RAlO3 (R = Sm, Nd), Solid State Sci. 42, 37 (2015). DOI: 10.1016/j.solidstatesciences.2015.03.007.
  • H. J. Munoz, S. A. Korili, and A. Gil, Progress and recent strategies in the synthesis and catalytic applications of perovskites based on lanthanum and aluminum, Materials 15 (9), 3288 (2022). DOI: 10.3390/ma15093288.
  • J. F. Vigier et al., Plutonium and americium aluminate perovskites, Inorg. Chem. 58 (14), 9118 (2019). DOI: 10.1021/acs.inorgchem.9b00679.
  • L. Vasylechko et al., CeAlO3 and Ce1-xRxAlO3 (R = La, Nd) solid solutions: crystal structure, thermal expansion and phase transitions, J. Solid State Chem. 180 (4), 1277(2007). DOI: 10.1016/j.jssc.2007.01.020.
  • A. I. Shelykh, and B. T. Melekh, CeAlO3 crystals: preparation and study of their lectrical and optical characteristics, Phys. Solid State 45 (2), 248 (2003). DOI: 10.1134/1.1553526.
  • X. Wang et al., Synthesis and electric property of CeAlO3 ceramics, Jpn. J. Appl. Phys. 44 (2R), 961 (2005). DOI: 10.1143/JJAP.44.961.
  • A. Feteira, D. C. Sinclair, and M. Lanagan, Structural and electrical characterization of CeAlO3 ceramics, J. Appl. Phys. 101 (6), 64110 (2007). DOI: 10.1063/1.2559648.
  • T. R. Araújo et al., Optical, morphological, physical and crystalline properties of type structures CexAl2-xO3 (x = 0; 0.25; 0.50; 0.75 and 1) obtained by microwave assisted combustion, Mater. Sci. Semicond. Process 134, 106014 (2021). DOI: 10.1016/j.mssp.2021.106014.
  • O. Sidletskiy et al., Luminescent and scintillation properties of CeAlO3 crystals and phase-separated CeAlO3/CeAl11O18 metamaterials, Crystals 9 (6), 296 (2019). DOI: 10.3390/cryst9060296.
  • S. Venâncio, and P. Miranda, Synthesis of CeAlO3/CeO2-Al2O3 for use as a solid oxide fuel cell functional anode material, Ceram. Int. 37 (8), 3139 (2011). DOI: 10.1016/j.ceramint.2011.05.054.
  • P. Arhipov et al., Growth and characterization of large CeAlO3 perovskite crystals, J. Cryst. Growth 430, 116 (2015). DOI: 10.1016/j.jcrysgro.2015.08.025.
  • T. Shishido et al., Flux growth of perovskite-type RAlO3 single crystals, J. Alloys Compd. 227 (2), 175 (1995). DOI: 10.1016/0925-8388(95)01622-8.
  • T. Shishido et al., Growth of rare earth aluminate crystals from molten solutions, J. Alloys Compd. 192 (1-2), 84 (1993). DOI: 10.1016/0925-8388(93)90193-Q.
  • S. T. Aruna et al., Synthesis of nanocrystalline CeAlO3 by solution-combustion route, Mater. Chem. Phys. 119 (3), 485 (2010). DOI: 10.1016/j.matchemphys.2009.10.001.
  • W. Fu, and D. Ijdo, The structure of CeAlO3 by Rietveld refifinement of X-ray powder diffraction data, J. Solid State Chem. 177 (9), 2973 (2004). DOI: 10.1016/j.jssc.2004.04.056.
  • F. Guo et al., Czochralski growth, magnetic properties and faraday characteristics of CeAlO3 crystals, Crystals 9 (5), 245 (2019). DOI: 10.3390/cryst9050245.
  • S. Zhang et al., Origin of color centers in the perovskite oxide CeAlO3, Chem. Plus Chem. 83 (11), 976 (2018). DOI: 10.1002/cplu.201800400.
  • M. K. Butt et al., Structural, electronic, half-metallic ferromagnetic and optical properties of cubic MAlO3 (M = Ce, Pr) perovskites: a DFT study, J. Phys. Chem. Solid 154, 110084 (2021). DOI: 10.1016/j.jpcs.2021.110084.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • R. L. Martin, and F. Illas, Antiferromagnetic exchange interactions from hybrid density functional theory, Phys. Rev. Lett. 79 (8), 1539 (1997). DOI: 10.1103/PhysRevLett.79.1539.
  • T. Bredow, and A. Gerson, Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO, Phys. Rev. B 61 (8), 5194 (2000). DOI: 10.1103/PhysRevB.61.5194.
  • J. Muscat, A. Wander, and N. M. Harrison, On the prediction of band gaps from hybrid functional theory, Chem. Phys. Lett. 342 (3-4), 397 (2001). DOI: 10.1016/S0009-2614(01)00616-9.
  • J. K. Perry, J. Tahir-Kheli, and W. A. Goddard, Antiferromagnetic band structure of La2CuO4: Becke-3-Lee-Yang-Parr calculations, Phys. Rev. B 63 (14), 144510 (2001). DOI: 10.1103/PhysRevB.63.144510.
  • K. N. Kudin, G. E. Scuseria, and R. L. Martin, Hybrid density-functional theory and the insulating gap of UO2, Phys. Rev. Lett. 89 (26), 266402 (2002). DOI: 10.1103/PhysRevLett.89.266402.
  • P. J. Hay et al., Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys. 125 (3), 34712 (2006). DOI: 10.1063/1.2206184.
  • J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (18), 8207 (2003). DOI: 10.1063/1.1564060.
  • C. Li et al., First-principles Study of Structural, Elastic, Electronic, and Optical Properties of Hexagonal BiAlO3, Phys. B 403 (4), 539 (2008). DOI: 10.1016/j.physb.2007.09.057.
  • S. M. Hosseini, Optical properties of cadmium telluride in zinc-blende and wurzite structure, Phys. B 403 (10-11), 1907 (2008). DOI: 10.1016/j.physb.2007.10.370.
  • K. Xiong, J. Robertson, and S. J. Clark, Defect states in the high-dielectric-constant gate oxide LaAlO3, Appl. Phys. Lett. 89 (2), 22907 (2006). DOI: 10.1063/1.2221521.
  • S. Saha, T. P. Sinha, and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62 (13), 8828 (2000). DOI: 10.1103/PhysRevB.62.8828.
  • A. Bouhemadou, and R. Khenata, Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3, Comput. Mater. Sci. 39 (4), 803 (2007). DOI: 10.1016/j.commatsci.2006.10.003.
  • R. Saniz et al., Structural, electronic, and optical properties of NiAl3: First-principles calculations, Phys. Rev. B 74 (1), 14209 (2006). DOI: 10.1103/PhysRevB.74.014209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.