60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and electrochemical characteristics of almost stoichiometric nanosized cathode materials Li1-xNi1+xO2 with a combination of sol-gel and solid-phase methods

ORCID Icon, ORCID Icon, , , , , & show all
Pages 266-286 | Received 28 Jun 2023, Accepted 08 Sep 2023, Published online: 28 Nov 2023

References

  • A. J. Salkind, Capacity of layered cathode materials for lithium-ion batteries - a theoretical study, in Proceedings of the symphosium on history of battery technology, edited by A.J. Salkind (The Electrochemical Society, Pennington, NY, 1987) pp. 87–114.
  • D. Linden, in Handbook of batteries and fuel cells, edited by D. Linden (McGraw-Hill Publishing Co, NY, 1984) pp. 1.3–1.12.
  • S. Hossain, in Handbook of batteries, edited by D. Linden (McGraw-Hill Book Co., NY, 1984) p. 63–61.
  • C. F. Holmes, in Lithium batteries, edited by G. Pistoia, vol. 5, Elsevier, Amsterdam, 1994 (Chapter 10).
  • T. Ohzuku, A. Ueda, and M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 Volt secondary lithium cells, J. Electrochem. Soc. 140 (7), 1862 (1993). DOI: 10.1149/1.2220730.
  • N. Kalaiselvi et al., Iron doped lithium cobalt oxides as lithium intercalation cathode materials, Int J. Ionics 7 (4-6), 451 (2001). DOI: 10.1007/BF02373583.
  • M. Minakshi et al., Synthesis and characterization of Li(Co0.5Ni0.5)PO4 cathode for Li-ion aqueous battery applications//electrochem, Electrochem. Solid-State Lett. 14 (6), A86 (2011). DOI: 10.1149/1.3561764.
  • A. M. Divakaran et al., Rational design on materials for developing next generation Lithium-ion secondary battery//progress in solid state chemistry, Prog. Solid State Chem. 62, 100298 (2021). DOI: 10.1016/j.progsolidstchem.2020.100298.
  • R.-C. Wang, Y.-C. Lin, and S.-H. Wu, A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries, Hydrometall 99 (3-4), 194 (2009). DOI: 10.1016/j.hydromet.2009.08.005.
  • M. Monajjemi et al., Electrochemical investigation of lithium ion battery including LiCo0.8Ni0.2O2, Li2MnO3, LiNiO2 cathode materials, Russ. J. Electrochem. 56 (8), 669 (2020). DOI: 10.1134/S1023193520030076.
  • S. K. Martha et al., Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2, J. Power Sources 199, 220 (2012). DOI: 10.1016/j.jpowsour.2011.10.019.
  • K. S. Ganesh et al., Influence of Zr dopant on microstructural and electrochemical properties of LiCoO2 thin film cathodes by RF sputtering, J. Electroanal. Chem. 828, 71 (2018). DOI: 10.1016/j.jelechem.2018.09.032.
  • P. Kalyani, N. Kalaiselvi, and N. Muniyandi, A new solution combustion route to synthesize LiCoO2 and LiMn2O4//J, Power Source. 111 (2), 232 (2002). DOI: 10.1016/S0378-7753(02)00307-5.
  • B. Ramesh Babu et al., Solid-state synthesis and characterization of LiNiyCo1-yO2 (0.0 ≤ y ≤ 0.4)//Int, J. Inorg. Mater. 3 (4–5), 401 (2001). DOI: 10.1016/S1466-6049(01)00023-X.
  • N. Kalaiselvi et al., Significance of Mg doped LiMn2O4 spinels as attract 4 V cathode materials for use in lithium batteries. Int, J. Ionic. 7 (3), 187 (2001). DOI: 10.1007/BF02419227.
  • M. Bianchini et al., There and back again: The journey of LiNiO2 as cathode active material, Angew. Chem. Int. Ed. 58 (31), 10434 (2019). DOI: 10.1002/anie.201812472.
  • Y. Wang, and H.-Y. Shadow Huang, An overview of lithium-ion battery cathode materials, Mater. Res. Soc. Symp. Proc. 1363, 302 (2011). DOI: 10.1557/opl.2011.
  • A. Y. Tsivadze, T. L. Kulova, and A. M. Skundin, Fundamental problems of lithium-ion rechargeable batteries, Prot. Met. Phys. Chem. Surf. 49 (2), 145 (2013).] DOI: 10.1134/S2070205113020081.
  • B. Faber⇤, B. Krause†, and R. ́S. ́. De La Sierra, Artisanal mining, livelihoods, and child labor in the cobalt supply chain of the democratic republic of Congo UC Berkeley: Center for Effective Global Action. 2017. Retrieved from https://escholarship.org/uc/item/17m9g4wm
  • R. Deberdt, Land access rights in minerals’ responsible sourcing. The case of cobalt in the Democratic Republic of the Congo, Resour. Policy 75, 102534 (2022). volume DOI: 10.1016/j.resourpol.2021.102534.
  • N. Bernards, Child labour, cobalt and the London metal exchange: fetish, fixing and the limits of financialization, Economy Society. 50 (4), 542 (2021). DOI: 10.1080/03085147.2021.1899659.
  • I. H. Kwon, H. R. Park, and Y. Y. Song, Effects of Zn, Al and Ti substitution on the electrochemical properties of LiNiO2 synthesized by the combustion method, Russ. J. Electrochem. 49 (3), 221 (2013). DOI: 10.1134/S1023193513030099.
  • M. Hata et al., Preparation of LiNiO2 using fluorine-modified NiO and its charge-discharge properties, Electrochem 89 (3), 223 (2021). DOI: 10.5796/electrochemistry.20-65151.
  • N. Tolganbek et al., Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review, J. All. Comp. 882, 160774 (2021). DOI: 10.1016/j.jallcom.2021.160774.
  • E. M. Shembel’ et al., Conversion of LiMn2-XCoXO4 spinel on the basis of electrolytically co-deposited Mn,Co oxide precursors in a lithium battery, Russ. J. Appl. Chem. 87 (9), 1260 (2014). DOI: 10.1134/S1070427214090122.
  • Y.-K. Sun, C. S. Yoon, and I.-H. Oh, Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures, Electrochim. Acta 48 (5), 503 (2003). DOI: 10.1016/S0013-4686(02)00717-X.
  • L. Wang et al., Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density, Chem. Soc. Rev. 47 (17), 6505 (2018). DOI: 10.1039/C8CS00322J.
  • J. Liu et al., Size-controlled synthesis of LiFePO4/C composites as cathode materials for lithium ion batteries, Int J Electrochem Sci 8 (2), 2378 (2013). DOI: 10.1016/S1452-3981(23)14316-1.
  • Y. Liu et al., Blended spherical lithium iron phosphate cathodes for high energy density lithium–ion batteries, Ionics 25 (1), 61 (2019). Р. DOI: 10.1007/s11581-018-2566-7.
  • P. Kalyani, and N. Kalaiselvi, Various aspects of LiNiO2 chemistry: A review, Sci. Technol. Adv. Mater. 6 (6), 689 (2005). DOI: 10.1016/j.stam.2005.06.001.
  • P. Kalyani, N. Kalaiselvi, and N. G. Renganathan, Microwave assisted synthesis of LiNiO2 - a preliminary investigation, J. Power Source. 123 (1), 53 (2003). DOI: 10.1016/S0378-7753(03)00458-0.
  • M. Bianchini et al., An in situ structural study on the synthesis and decomposition of LiNiO2, J. Mater. Chem. A 8 (4), 1808 (2020). DOI: 10.1039/C9TA12073D.
  • C. Pouillerie, E. Suard, and C. Delmas, Structural characterization of Li1-z-xNi1 + zO2 by neutron diffraction, J. Solid State Chem. 158 (2), 187 (2001). DOI: 10.1006/jssc.2001.9092.
  • A. Hirano et al., Relationship between non-stoichiometry and physical properties in LiNiO2, Solid State Ionics 78 (1-2), 123 (1995). DOI: 10.1016/0167-2738(95)00005-Q.
  • P. Kalyani et al., Studies on Li0.7Al0.3KxCoxO2 solid solutions as alternative cathode materials for lithium batteries, Mater. Res. Bull 39 (1), 41 (2004). DOI: 10.1016/j.materresbull.2003.09.021.
  • A. Mesnier, and A. Manthiram, Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells, ACS Appl. Mater. Interfaces. 12 (47), 52826 (2020). DOI: 10.1021/acsami.0c16648.
  • J. Välikangas et al., Precipitation and calcination of high-capacity LiNiO2 cathode material for lithium-ion batteries, Appl. Sci. 10 (24), 8988 (2020). DOI: 10.3390/app10248988.
  • Y. Sun et al., Low temperature synthesis of layered LiNiO2 cathode material in air atmosphere by ion exchange reaction, Sol. St. Ion. 177 (13-14), 1173 (2006). DOI: 10.1016/j.ssi.2006.04.050.
  • R. L. Myers, The 100 most important chemical compounds: a reference guide (Westport: Greenwood Press London, 2007), pp. 355.
  • Y. Tretyakov et al., Inorganic chemistry. (Moscow: Chemistry, 2001) p. 378–442. [In Russian]
  • E. V. Makhonina, V. S. Pervov, and V. S. Dubasova, Oxide materials as positive electrodes of lithium-ion batteries, Russ. Chem. Rev. 73 (10) 991 (2004). DOI: 10.1070/RC2004v073n10ABEH000896.
  • V. A. Rabinovich, and Z. Y. Khavin, Brief chemical reference book, edited by V. A. Rabinovich (Leningrad: Chemistry, 1978) 392. [In Russian]
  • A. E. Zotova, Multicomponent cathode materials for energy-intensive lithium-ion batteries. Abstract dis… cand. chem, Sciences. - Moscow, 22. [In Russian] (2013).
  • F. Riewald et al., The LiNiO2 cathode active material: A comprehensive study of calcination conditions and their correlation with physicochemical properties Part II. Morphology, J. Electrochem. Soc. 169 (2), 020529 (2022). DOI: 10.1149/1945-7111/ac4bf3.
  • T. A. Taha, and M. M. El-Molla, Green simple preparation of LiNiO2 Nanopowder for lithium ion battery, J. Mater. Res. Technol. 9 (4), 7955 (2020). DOI: 10.1016/j.jmrt.2020.04.098.
  • T. Ohzuku et al., Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 Volt secondary lithium cells, Electrochim. Acta 38 (9), 1159 (1993). DOI: 10.1016/0013-4686(93)80046-3.
  • F. Y. Yan et al., Study of positive materials LiNiO2 synthesized by solid-gas method, J. Sichuan Univ. Nat. Sci. Ed. 39 (5), 918 (2002).
  • T. A. Taha, S. Elrabaie, and M. T Attia, Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite, J. Mater. Sci: Mater. Electron. 29 (21), 18493 (2018). DOI: 10.1007/s10854-018-9965-4.
  • M. D. Levi, and D. Aurbach, Impedance of a single intercalation particle and of non-homogeneous, multilayered porous composite electrodes for Li-ion batteries, J. Phys. Chem. B 108 (31), 11693 (2004). DOI: 10.1021/jp0486402.
  • M. Umeda et al., Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon, Electrochim. Acta 47 (6), 885 (2001). DOI: 10.1016/S0013-4686(01)00799-X.
  • C. Wang, A. J. Appleby, and F. E. Little, Electrochemical impedance study of initial lithium ion intercalation into graphite powders, Electrochim. Acta 46 (12), 1793 (2001). DOI: 10.1016/S0013-4686(00)00782-9.
  • A. V. Ivanishchev et al., Structural and electrochemical investigation of lithium ions insertion processes in polyanionic compounds of lithium and transition metals, J. Electroanal. Chem. 860, 113894 (2020). DOI: 10.1016/j.jelechem.2020.113894.
  • A. V. Churikov et al., Processes of lithium incorporation into thin-film lithium-tin and lithium-carbon electrodes. Study by impedance spectroscopy, Electrochem. Energy. 7 (4), 169[In Russian] (2007).
  • R. Amin, D. B. Ravnsbæk, and Y.-M. Chiang, Characterization of electronic and ionic transport in Li1-xNi0.8Co0.15Al0.05O2 (NCA), J. Electrochem. Soc. 162 (7), A1163 (2015). DOI: 10.1149/2.0171507jes.
  • [Dataset] R. Korneikov, and V. Efremov, Synthesis of almost stoichiometric nanosized cathode materials Li1-xNi1 + xO2 by a combined method and study of their physical and electrochemical characteristics: Impedance spectroscopy, Mendeley Data V1 (2022). DOI: 10.17632/rg6g22y5t4.1.
  • [Dataset] R. Korneikov, and V. Efremov, Synthesis of almost stoichiometric nanosized cathode materials Li1-xNi1 + xO2 by a combined method and study of their physical and electrochemical characteristics: IR spectra, Mendeley Data V1 (2022). DOI: 10.17632/cpbjndcfws.1.
  • [Dataset] R. Korneikov, and K. Kesarev, Synthesis of almost stoichiometric nanosized cathode materials Li1-xNi1 + xO2 by a combined method and study of their physical and electrochemical characteristics: XRD patterns, Mendeley Data V1 (2022). DOI: 10.17632/mchysjd8yy.1.
  • [Dataset] R. Korneikov, and O. Shcherbina, Synthesis of almost stoichiometric nanosized cathode materials Li1-xNi1 + xO2 by a combined method and study of their physical and electrochemical characteristics: microstructures, Mendeley Data V1 (2022). DOI: 10.17632/vm2g4h8c6k.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.