34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Magnetic properties and hysteresis loops of mixed spin - (3/2, 1) in core-shell hexagonal nanotube: comparative study of mean-field theory and Monte Carlo simulation

, ORCID Icon &
Pages 223-240 | Received 24 Jun 2023, Accepted 04 Sep 2023, Published online: 28 Nov 2023

References

  • Y. Wang et al., Efficient enhancement of light trapping in the double-textured Al doped ZnO films with nanorod and crater structures, Phys. B: Condens. Matter 565, 9 (2019). DOI: 10.1016/j.physb.2019.04.024.
  • Z. Zhang et al., Structural and magnetic properties of porous FexOy nanosheets and nanotubes fabricated by electrospinning, Ceram. Int. 45 (1), 457 (2019). DOI: 10.1016/j.ceramint.2018.09.189.
  • A. H. Zaki et al., Novel magnetic standpoints in Na2Ti3O7 nanotubes, J. Magn. Magn. Mater. 476, 207 (2019). DOI: 10.1016/j.jmmm.2019.01.002.
  • A. Gorczyca-Goraj, T. Domański, and M. M. Maśka, Topological superconductivity at finite temperatures in proximitized magnetic nanowires, Phys. Rev. B 99 (23), 235430 (2019). DOI: 10.1103/PhysRevB.99.235430.
  • S. J. Son et al., Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery, J. Am. Chem. Soc. 127 (20), 7316 (2005). DOI: 10.1021/ja0517365.
  • Y. Ye, and B. Geng, Magnetic nanotubes: synthesis, properties, and applications, Crit. Rev. Solid State Mater. Sci. 37 (2), 75 (2012). DOI: 10.1080/10408436.2011.613491.
  • A. L. Kozlovskiy et al., Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching, J. Nanomater. 1 (2017). DOI: 10.1155/2017/3060972.
  • M. Ramasamy, P. S. Kumar, and V. K. Varadan, 2017. Nanosensors, biosensors, info-tech sensors, and 3D systems 2017, in International Society for Optics and Photonics (2017), Vol. 10167, p. 1016715, Apr.
  • G. V. Kurlyandskaya et al., Giant-magnetoimpedance-based sensitive element as a model for biosensors, Appl. Phys. Lett. 82 (18), 3053 (2003). DOI: 10.1063/1.1571957.
  • G. Raniszewski, A. Miaskowski, and S. Wiak, The application of carbon nanotubes in magnetic fluid hyperthermia, J. Nanomater. 2015, 1 (2015). DOI: 10.1155/2015/527652.
  • D. Zhou et al., Template synthesis and magnetic behavior of FeNi alloy nanotube arrays, Chin. J. Chem. Phys. 20 (6), 821 (2007). DOI: 10.1088/1674-0068/20/06/821-825.
  • T. He et al., Controllable synthesis of hierarchical NiCo 2 S 4 @Ni 3 S 2 core–shell nanotube arrays with excellent electrochemical performance for aqueous asymmetric supercapacitors, RSC Adv. 6 (99), 97352 (2016). DOI: 10.1039/C6RA21284K.
  • D. C. Higgins et al., Titanium nitride–carbon nanotube core–shell composites as effective electrocatalyst supports for low temperature fuel cells, J. Mater. Chem. 22 (9), 3727 (2012). DOI: 10.1039/c2jm15014j.
  • T. Kaneyoshi, Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube), J. Magn. Magn. Mater. 323 (20), 2483 (2011). DOI: 10.1016/j.jmmm.2011.05.023.
  • O. Canko et al., Some characteristic behavior of spin-1 Ising nanotube, Phys. Lett. 375 (41), 3547 (2011). DOI: 10.1016/j.physleta.2011.08.029.
  • Y. Liu et al., Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure, Phys B: Condens. Matter 541, 79 (2018). DOI: 10.1016/j.physb.2018.04.042.
  • A. Jabar et al., Ferrimagnetic behaviors in a double-wall cubic metal nanotube: a Monte Carlo study, J. Supercond. Nov. Magn. 29 (7), 1953 (2016). DOI: 10.1007/s10948-016-3504-4.
  • R. Masrour, and A. Jabar, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin Ising nanotube with double (surface and core) walls, Europhys. Lett. 128 (4), 46002 (2020). DOI: 10.1209/0295-5075/128/46002.
  • E. Konstantinova, Theoretical simulations of magnetic nanotubes using Monte Carlo method, J. Magn. Magn. Mater. 320 (21), 2721 (2008). DOI: 10.1016/j.jmmm.2008.06.007.
  • H. Falk, Inequalities of J. W. Gibbs, Am. J. Phys. 38 (7), 858 (1970). DOI: 10.1119/1.1976484.
  • N. N. Bogoliubov, On the theory of superfluidity, J. Phys. 11, 23 (1947).
  • R. P. Feynman, Slow electrons in a polar, Phys. Rev. 97 (3), 660 (1955). DOI: 10.1103/PhysRev.97.660.
  • L. Néel, Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme, Ann. Phys. 12 (3), 137 (1948). DOI: 10.1051/anphys/194812030137.
  • W. Wang et al., Compensation behaviors and magnetic properties in a cylindrical ferrimagnetic nanotube with core-shell structure: A Monte Carlo study, Phys. E 101, 110 (2018). DOI: 10.1016/j.physe.2018.03.025.
  • Y. Kocakaplan, and M. Keskin, Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system, J. Appl. Phys. 116, 093904 (2014).
  • D. Lv et al., Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure, J. Alloys Compd. 701, 935 (2017). DOI: 10.1016/j.jallcom.2017.01.099.
  • W. Wang et al., Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire, Superlattices Microstruct. 98, 433 (2016). DOI: 10.1016/j.spmi.2016.09.013.
  • W. Wang et al., Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure, J. Phys. Chem. Solid 108, 39 (2017).
  • Y. Benhouria et al., The dielectric properties and the hysteresis loops of the spin-1 Ising nanowire system with the effect of a negative core/shell coupling: A Monte Carlo study, Superlattices Microstruct. 73, 121 (2014). DOI: 10.1016/j.spmi.2014.05.021.
  • Y. Yang et al., Magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1/2, 1, 3/2) Ising nanoisland: Monte Carlo study, Phys. E 108, 358 (2019). DOI: 10.1016/j.physe.2018.11.038.
  • W. Jiang et al., Surface effects on a ferrimagnetic hexagonal nanowire with single-ion anisotropis and transverse field, Phys. E 47, 95 (2013). DOI: 10.1016/j.physe.2012.10.023.
  • M. Boughrara, M. Kerouad, and A. Zaim, Phase diagrams and magnetic properties of a cylindrical Ising nanowire: Monte Carlo and effective field treatments, J. Magn. Magn. Mater. 368, 169 (2014). DOI: 10.1016/j.jmmm.2014.04.075.
  • M. Boughrara, M. Kerouad, and A. Zaim, The phase diagrams and the magnetic properties of a ferrimagnetic mixed spin 1/2 and spin 1 Ising nanowire, J. Magn. Magn. Mater. 360, 222 (2014). DOI: 10.1016/j.jmmm.2014.02.043.
  • L. Bahmad et al., The effect of a random crystal-field on the mixed ising spins (1/2, 3/2), Acta Phys. Pol. A 119 (6), 740 (2011). DOI: 10.12693/APhysPolA.119.740.
  • G. D. Ngantso et al., Effective field study of ising model on a double perovskite structure, J. Magn. Magn. Mater. 423 (2015), 337 (2017). DOI: 10.1016/j.jmmm.2016.09.120.
  • W. Jiang et al., Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field, J. Magn. Magn. Mater. 353, 90 (2014). DOI: 10.1016/j.jmmm.2013.10.028.
  • Y. Kocakaplan, E. Kantar, and M. Keskin, Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur. Phys. J. B 86 (10), 420 (2013). DOI: 10.1140/epjb/e2013-40659-0.
  • J. D. Agudelo-Giraldo et al., Influence of radial and tangential anisotropy components in single wall magnetic nanotubes. A Monte Carlo approach, Phys. Stat. Mech. Appl. 466, 440 (2017). DOI: 10.1016/j.physa.2016.08.030.
  • A. A. Bukharov et al., Magnetic hysteresis in a molecular Ising ferrimagnet: Glauber dynamics approach, Eur. Phys. J. B 70 (3), 369 (2009). DOI: 10.1140/epjb/e2009-00246-8.
  • S. Bouhou et al., Hysteresis loops and susceptibility of a transverse Ising nanowire, J. Magn. Magn. Mater. 324 (16), 2434 (2012). DOI: 10.1016/j.jmmm.2012.02.104.
  • R. Masrour et al., Magnetic properties of a single iron atomic chain encapsulated in armchair carbon nanotubes: A Monte Carlo study, J. Magn. Magn. Mater. 432, 318 (2017). DOI: 10.1016/j.jmmm.2017.01.101.
  • N. Ahmad et al., Magnetoelastic anisotropy induced effects on field and temperature dependent magnetization reversal of Ni nanowires and nanotubes, J. Supercond. Nov. Magn. 24 (1–2), 785 (2011). DOI: 10.1007/s10948-010-1016-1.
  • H. Magoussi, A. Zaim, and M. Kerouad, Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube, Chin. Phys. B 22 (11), 116401 (2013). DOI: 10.1088/1674-1056/22/11/116401.
  • R. Masrour, and A. Jabar, Localized spin modes of decorated magnetic clusters on a magnetic surface, J. Cluster Sci. 28 (3), 1443 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.