73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study the influence of the crystal structure of the co-precipitated brownmillerite CaFeO2.5+δ sample on optical and magnetic properties

, , , &
Pages 198-211 | Received 11 Jun 2023, Accepted 05 Aug 2023, Published online: 28 Nov 2023

References

  • T. Labii et al., Dilatometric study of CaFeO2.5 single crystal, J. Therm. Anal. Calorim. 112 (2), 865 (2013). DOI: 10.1007/s10973-012-2690-y.
  • M. Ceretti, S. Corallini, and W. Paulus, Influence of phase transformations on crystal growth of stoichiometric brownmillerite oxides: Sr2ScGaO5 and Ca2Fe2O5, Crystals. 6 (11), 146 (2016). DOI: 10.3390/cryst6110146.
  • E. K. Abdel-Khalek et al., Study the oxygen vacancies and Fe oxidation states in CaFeO3-δ perovskite nanomaterial, Physica B. 624, 413415 (2022). DOI: 10.1016/j.physb.2021.413415.
  • R. K. Hona, S. B. Karki, and F. Ramezanipour, Oxide electrocatalysts based on earth-abundant metals for both hydrogen- and oxygen-evolution reactions, ACS Sustain. Chem. Eng. 8 (31), 11549 (2020). DOI: 10.1021/acssuschemeng.0c02498.
  • Y. Tao et al., Atomic occupancy mechanism in brownmillerite Ca2FeAlO5 from a thermodynamic perspective, J. Am. Ceram. Soc. 103 (1), 635 (2020). DOI: 10.1111/jace.16711.
  • C. C. da Silva, and A. S. B. Sombra, Temperature dependence of the magnetic and electric properties of Ca2Fe2O5, MSA. 02 (09), 1349 (2011). DOI: 10.4236/msa.2011.29183.
  • H. Kruger et al., High-temperature structural phase transition in Ca2Fe2O5 studied by in-situ X-ray diffraction and transmission electron microscopy, J. Solid State Chem. 182 (6), 1515 (2009). DOI: 10.1016/j.jssc.2009.03.027.
  • T. C. Gibb et al., Synthesis under high pressure of vacancy-ordered phases in the system CaFeO3-y, J. Mater. Chem. 5 (11), 1909 (1995). DOI: 10.1039/JM9950501909.
  • M. Ceretti et al., Growth and characterization of large high quality brownmillerite CaFeO2.5 single crystals, Cryst Eng Comm. 14 (18), 5771 (2012). DOI: 10.1039/c2ce25413a.
  • T. C. Gibb et al., Synthesis under high pressure and characterisation by Mossbauer spectroscopy of non-stoichiometric Ca2Fe2O5.12, J. Mater. Chem. 4 (9), 1451 (1994). DOI: 10.1039/JM9940401451.
  • G. Rihia et al., Effect of synthesis method on the structural behavior of CaFeO2.5 compound, Phys. Chem. Solid State. 23 (2), 249 (2022). DOI: 10.15330/pcss.23.2.249-255.
  • S. K. Jaiswal, and J. Kumar, Structural and optical absorption studies of barium substituted strontium ferrite powder, Solid State Sci. 14 (8), 1157 (2012). DOI: 10.1016/j.solidstatesciences.2012.05.011.
  • S. B. Karki, R. K. Hona, and F. Ramezanipour, Effect of structure on sensor properties of oxygen-deficient perovskites, A2BB′O5 (A = Ca, Sr; B = Fe; B′ = Fe, Mn) for oxygen, carbon dioxide and carbon monoxide sensing, J Electr. Mater. 49 (2), 1557 (2020). DOI: 10.1007/s11664-019-07862-8.
  • A. T. Kozakov et al., Bi1-xCaxFeO3-δ (0 ≤ x ≤ 1) ceramics: crystal structure, phase and elemental composition, and chemical bonding from X-ray diffraction, Raman scattering, Mössbauer, and X-ray photoelectron spectra, J. Alloys Comp. 664, 392 (2016). DOI: 10.1016/j.jallcom.2015.12.241.
  • E. K. Abdel-Khalek et al., Synthesis and characterization of SrFeO3-δ nanoparticles as antimicrobial agent, J. Sol-Gel Sci. Technol. 97 (1), 27 (2021). DOI: 10.1007/s10971-020-05431-8.
  • A. Galhoum et al., Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of light and heavy rare earth metals: uptake kinetics and sorption isotherms, Nanomaterials (Basel). 5 (1), 154 (2015). DOI: 10.3390/nano5010154.
  • A. I. Becerro et al., The transition from short-range to long-range ordering of oxygen vacancies in CaFexTi1-xO3-x/2 perovskites, Phys. Chem. Chem. Phys. 2 (17), 3933 (2000). DOI: 10.1039/b003847o.
  • D. S. Vavilapalli et al., Nitrogen incorporated photoactive brownmillerite Ca2Fe2O5 for energy and environmental applications, Sci. Rep. 10 (1), 2713 (2020). DOI: 10.1038/s41598-020-59454-w.
  • K. Gupta et al., Scaling of extended defects in nano-sized brownmillerite CaFeO2, Phys. Status Solidi A. 210 (9), 1771 (2013). DOI: 10.1002/pssa.201329027.
  • Y. Meng et al., Direct vapor − liquid − solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics, ACS Nano. 13 (5), 6060 (2019). DOI: 10.1021/acsnano.9b02379.
  • S. G. Chandrappa et al., Fluoride perovskite (KNixCo1 − xF3) oxygen-evolution electrocatalyst with highly polarized electronic configuration, ACS Appl. Energy Mater. 4 (12), 13425 (2021). DOI: 10.1021/acsaem.1c03103.
  • P. D. Battle, T. C. Gibb, and S. Nixon, A study of the ordering of oxygen vacancies in the nonstoichiometric perovskite Sr2LaFe308+y by Mössbauer spectroscopy and a comparison with SrFe03-y, J. Solid State Chem. 79 (1), 75 (1989). DOI: 10.1016/0022-4596(89)90252-1.
  • R. Ahmed et al., Colossal dielectric behavior in BaFeO3-δ ceramics, Ceram. Int. 45 (10), 13484 (2019). DOI: 10.1016/j.ceramint.2019.04.051.
  • M. Parras et al., Structural aspects and Mössbauer resonance investigation of Ba2Fe2O5, J. Solid State Chem 88 (1), 261 (1990). DOI: 10.1016/0022-4596(90)90223-K.
  • O. Clemens et al., Crystallographic and magnetic structure of the perovskite-type compound BaFeO2.5: unrivaled complexity in oxygen vacancy ordering, Inorg. Chem. 53 (12), 5911 (2014). DOI: 10.1021/ic402988y.
  • V. D. Sedykh et al., Effect of the oxygen content on the local environment of Fe atoms in anion-deficient SrFeO3-, Phys. Solid State. 61 (6), 1099 (2019). DOI: 10.1134/S1063783419060210.
  • S. K. Jaiswal, and J. Kumar, Sol–gel formation, Mössbauer studies, optical absorption and impedance characteristics of Ba0.5Sr0.5Zn0.2Fe0.8O3−ξ powder, Mater. Chem. Phys. 136 (1), 28 (2012). DOI: 10.1016/j.matchemphys.2012.06.013.
  • S. Manzoor, and S. Husain, Analysis of Zn substitution on structure, optical absorption, magnetization, and high temperature specific heat anomaly of the nano-crystalline LaFeO3, J. Appl. Phys. 124, 065110 (2018).
  • E. K. Abdel-Khalek et al., Study of the influence of synthesis method in BaFeO3-δ perovskite on structural, optical, magnetic and antibacterial properties, Physica B. 628, 413573 (2022). DOI: 10.1016/j.physb.2021.413573.
  • O. Clemens et al., Synthesis, structural and magnetic characterisation of the fluorinated compound 15R-BaFeO2F, J. Solid State Chem. 203, 218 (2013). DOI: 10.1016/j.jssc.2013.04.031.
  • L. Liu et al., Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticless, Chinese Phys. B. 25 (9), 097801 (2016). DOI: 10.1088/1674-1056/25/9/097801.
  • A. J. Hauser et al., Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies, Appl. Phys. Lett. 92, 222901 (2008).
  • L. Khanna, and N. K. Verma, Size-dependent magnetic properties of calcium ferrite nanoparticles, J. Magn. Magn. Mater. 336, 1 (2013). DOI: 10.1016/j.jmmm.2013.02.016.
  • N. T. Hung, N. H. Lam, A. D. Nguyen, L. H. Bac, N. N. Trung, D. D. Dung, Y. S. Kim, N. Tsogbadrakh, T. Ochirkhuyag, D. Odkhuu, Intrinsic and tunable ferromagnetism in Bi0.5Na0.5TiO3 through CaFeO3-δ modification, Sci. Rep., 1. 10 (2020) 6189. DOI: 10.1038/s41598-020-62889-w.
  • P. Berastegui, S. G. Eriksson, and S. Hull, A neutron diffraction study of the temperature dependence of Ca2Fe2O5, Mater. Res. Bull. 34 (2), 303 (1999). DOI: 10.1016/S0025-5408(99)00007-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.