117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy storage and electrocaloric properties of lead free (1‐x)(0.6Ba(Zr0.2Ti0.8)O3‐0.4(Ba0.7Ca0.3)TiO3)–xBiZn0.5Ti0.5O3 ferroelectric ceramics

&
Pages 20-32 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 10 Dec 2023

References

  • Z. Sun et al., Progress, outlook, and challenges in lead‐free energy‐storage ferroelectrics, Adv. Elect. Materials 6 (1), 1900698 (2020). DOI: 10.1002/aelm.201900698.
  • B. Chu et al., A dielectric polymer with high electric energy density and fast discharge speed, Science 313 (5785), 334 (2006). DOI: 10.1126/science.1127798.
  • A. R. Jayakrishnan et al., Enhancing the dielectric relaxor behavior and energy storage properties of 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics through the incorporation of paraelectric SrTiO3, J. Mater. Sci: Mater. Electron 30 (21), 19374 (2019). DOI: 10.1007/s10854-019-02299-5.
  • A. R. Jayakrishnan et al., Composition-dependent xBa(Zr0.2Ti0.8)O3-(1-x)(Ba0.7Ca0.3)TiO3 bulk ceramics for high energy storage applications, Ceram. Int. 45 (5), 5808 (2019). DOI: 10.1016/j.ceramint.2018.11.250.
  • S. Jiang et al., Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties, Ceram. Int. 39 (5), 5571 (2013). DOI: 10.1016/j.ceramint.2012.12.071.
  • G. Flora, D. Gupta, and A. Tiwari, Toxicity of lead: a review with recent updates, Interdisciplinary Toxicol. 5 (2), 47 (2012). DOI: 10.2478/v10102-012-0009-2.
  • Z. Hanani et al., Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor, J Mater Sci: Mater Electron 30 (7), 6430 (2019). DOI: 10.1007/s10854-019-00946-5.
  • A. R. Jayakrishnan et al., Microstructure tailoring for enhancing the energy storage performance of 0.98[0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7, Ca0.3)TiO3]-0.02BiZn1/2Ti1/2O3 ceramic capacitors, J. Sci. Adv. Mater. Dev. 5 (1), 119 (2020). DOI: 10.1016/j.jsamd.2019.12.001.
  • I. C. Amaechi et al. A. B-site modified photoferroic Cr3+-doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties. RSC Adv., 9 (36), 20806 (2019). DOI: 10.1039/C9RA03439K.
  • A. R. Jayakrishnan et al., Semiconductor/relaxor 0–3 type composites: A novel strategy for energy storage capacitors. J. Sci.: Adv. Mater. Dev., 6 (1), 19 (2021). DOI: 10.1016/j.jsamd.2020.09.012.
  • W. P. Cao et al., Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics, J. Eur. Ceram. Soc. 36 (3), 593 (2016). DOI: 10.1016/j.jeurceramsoc.2015.10.019.
  • X. Niu et al., Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement, J. Adv. Ceram. 10 (3), 482 (2021). DOI: 10.1007/s40145-020-0450-1.
  • K. S. Srikanth, and R. Vaish, Enhanced electrocaloric, pyroelectric and energy storage performance of BaCeTi1−xO3 ceramics, J. Eur. Ceram. Soc. 37 (13), 3927 (2017). DOI: 10.1016/j.jeurceramsoc.2017.04.058.
  • Z. Kutnjak, B. Rožič, and R. Pirc, Electrocaloric Effect: Theory, Measurements, and Applications (John Wiley & Sons, Inc, NJ, USA 2015), p. 1–19.
  • J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (1), 229 (2011). DOI: 10.1146/annurev-matsci-062910-100341.
  • X. Moya et al., Giant electrocaloric strength in single-crystal BaTiO3, Adv. Mater. 25 (9), 1360 (2013). DOI: 10.1002/adma.201203823.
  • X. Dong et al., Effective strategy to realise excellent energy storage performances in lead-free barium titanate-based relaxor ferroelectric, Ceram. Int. 47 (5), 6077 (2021). DOI: 10.1016/j.ceramint.2020.10.183.
  • Y. Hou et al., Giant electrocaloric response in compositional manipulated BaTiO3 relaxor–ferroelectric system, J. Appl. Phys. 127 (6), 064103 (2020). DOI: 10.1063/1.5142635.
  • R. Shi et al., A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability, J. Alloys Compd. 815, 152356 (2020). DOI: 10.1016/j.jallcom.2019.152356.
  • J. Yi et al., Structure, dielectric, ferroelectric, and magnetic properties of (1 − x) BiFeO3–x (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics, Mater. Res. Bull. 66, 132 (2015). DOI: 10.1016/j.materresbull.2015.02.035.
  • Y. Fan et al., Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy, J. Eur. Ceram. Soc. 39 (15), 4770 (2019). DOI: 10.1016/j.jeurceramsoc.2019.07.021.
  • Z. Cen et al., Remarkably high-temperature stability of Bi(Fe1− xAlx)O3-BaTiO3 solid solution with near-zero temperature coefficient of piezoelectric properties, J. Am. Ceram. Soc 96 (7), 2252 (2013). DOI: 10.1111/jace.12326.
  • Y. Li et al., Electromechanical properties of (Ba,Sr)(Zr,Ti)O3 ceramics, Ceram. Int. 42 (8), 10191 (2016). DOI: 10.1016/j.ceramint.2016.03.137.
  • G. Liu et al., Dielectric, ferroelectric and energy storage properties of lead-free (1-x)Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature, Ceram. Int. 45 (12), 15556 (2019). DOI: 10.1016/j.ceramint.2019.05.061.
  • Y. Tan et al., Unfolding grain size effects in barium titanate ferroelectric ceramics, Sci. Rep. 5 (1), 9953 (2015). DOI: 10.1038/srep09953.
  • M. H. Lente and J. A. Eiras, 90° domain reorientation and domain wall rearrangement in lead zirconate titanate ceramics characterized by transient current and hysteresis loop measurements, J. Appl. Phys. 89 (9), 5093 (2001). DOI: 10.1063/1.1333742.
  • P. Potnis, N. T. Tsou, and J. Huber, A review of domain modelling and domain imaging techniques in ferroelectric Crystals, Materials (Basel) 4 (2), 417 (2011). DOI: 10.3390/ma4020417.
  • Q. Liu et al., High-performance lead-free piezoelectrics with local structural heterogeneity, Energy Environ. Sci. 11 (12), 3531 (2018). DOI: 10.1039/C8EE02758G.
  • N. Sun et al., Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO 3Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions, J. Mater. Chem. C. 6 (40), 10693 (2018). DOI: 10.1039/C8TC03481H.
  • M. Zeng et al., NiNb2O6-BaTiO3 ceramics for energy-storage capacitors, Energy Tech 6 (5), 899 (2018). DOI: 10.1002/ente.201700461.
  • L. Wu et al., Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency, J. Mater. Chem. C 3 (4), 750 (2015). DOI: 10.1039/C4TC02291B.
  • D. Zhan et al., Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics, J. Phys. Chem. Solids 114, 220 (2018). DOI: 10.1016/j.jpcs.2017.10.038.
  • W. Ping, W. Liu, and S. Li, Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation, Ceram. Int. 45 (9), 11388 (2019). DOI: 10.1016/j.ceramint.2019.03.003.
  • A. B. Swain, V. Subramanian, and P. Murugavel, The role of precursors on piezoelectric and ferroelectric characteristics of 0.5BCT-0.5BZT ceramic, Ceram. Int. 44 (6), 6861 (2018). DOI: 10.1016/j.ceramint.2018.01.110.
  • F.-X. Zhao et al., Effect of Sr2+ on phase structure and properties for 0.6(Na0.5Bi0.5)TiO3-0.4(Bi1-Sr)TiO3 relaxor ferroelectrics, Ceram. Int. 46 (3), 3257 (2020). DOI: 10.1016/j.ceramint.2019.10.031.
  • X.-F. Zhang et al., Structure, energy storage properties and dielectric responses of Ba0.95Ca0.05ZrxTi1−xO3ceramics prepared by a citrate method, J Mater Sci: Mater Electron 31 (2), 1382 (2020). DOI: 10.1007/s10854-019-02651-9.
  • W. Cai et al., Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics, J. Mater. Sci: Mater Electron 31 (12), 9167 (2020). DOI: 10.1007/s10854-020-03446-z.
  • S. Smail et al., Structural, dielectric, electrocaloric and energy storage properties of lead free Ba0.975La0.017(ZrxTi0.95-x)Sn0.05O3 (x = 0.05; 0.20) ceramics, Mater. Chem. Phys. 252, 123462 (2020). DOI: 10.1016/j.matchemphys.2020.123462.
  • S. Merselmiz et al., High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic, Ceram. Int. 46 (15), 23867 (2020). DOI: 10.1016/j.ceramint.2020.06.163.
  • S. Merselmiz et al., Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic, RSC Adv. 11 (16), 9459 (2021). DOI: 10.1039/D0RA09707A.
  • J. Mallick el al., Electrocaloric effect and temperature dependent scaling behaviour of dynamic ferroelectric hysteresis studies on modified BTO, J. Phys. Chem. Solids 169, 110844 (2022). DOI: 10.1016/j.jpcs.2022.110844.
  • X. Su et al., Large electrocaloric effect over a wide temperature span in lead-free bismuth sodium titanate-based relaxor ferroelectrics, J. Materiomics 9 (2), 289 (2023). DOI: 10.1016/j.jmat.2022.10.005.
  • B. Asbani et al., Lead-free Ba0.8Ca0.2(ZrxTi1−x)O3 ceramics with large electrocaloric effect, Appl. Phys. Lett. 106 (4), 042902 (2015). DOI: 10.1063/1.4906864.
  • F. L. Goupil et al., Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics, Appl. Phys. Lett. 107, 172903 (2015). DOI: 10.1063/1.4934759.
  • H. Zaghouene, I. Kriaa, and H. Khemakhem, Ferroelectric and electrocaloric effect in lead-free (Ba1−xCax)1 − 3y/2BiyTiO3 ceramics, Mater. Sci. Engin. B 227, 110 (2018). DOI: 10.1016/j.mseb.2017.10.014.
  • B. Yang, X. Han, and L. Qiao, Optimized electrocaloric refrigeration capacity in lead-free (1 − x)BaZr0.2Ti0.8O3-xBa0.7Ca 0.3TiO3 ceramics, Appl. Phys. Lett 102, 252904 (2013). DOI: 10.1063/1.4810916.
  • X. Hou et al., Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics, Phys. Rev. Applied 15 (5), 054019 (2021). DOI: 10.1103/PhysRevApplied.15.054019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.