46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modified BBFTO ceramic oxide with high dielectric constant and low loss-tangent for possible electronic applications

, &
Pages 115-126 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 10 Dec 2023

References

  • N. Ortega et al., Multifunctional magnetoelectric materials for device applications, J. Phys. Condens. Matter. 27 (50), 504002 (2015). DOI: 10.1088/0953-8984/27/50/504002.
  • A. von Hippel, Ferroelectricity, domain structure, and phase transitions of barium titanate, Rev. Mod. Phys. 22 (3), 221 (1950). DOI: 10.1103/RevModPhys.22.221.
  • A. S. Everhardt et al., Temperature-independent giant dielectric response in transitional BaTiO3 thin films, Appl. Phys. Rev. 7 (1), 011402 (2020). DOI: 10.1063/1.5122954.
  • S. Gupta et al., Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film, J. Appl. Phys.115 (23), 234105 (2014). DOI: 10.1063/1.4884680.
  • F. Yan et al., Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering, Energy Storage Mater. 30, 392 (2020). DOI: 10.1016/j.ensm.2020.05.026.
  • T. Ahmed et al., Effective A-site modulation and crystal phase evolution for high ferro/piezoelectric performance in ABO3 compounds: Yttrium-doped BiFeO3-BaTiO3, Solid State Sci. 114, 106562 (2021). DOI: 10.1016/j.jallcom.2022.167709.
  • Z. F. Tong et al., Structure, magnetic properties and microwave absorption properties of NdFe1-xNixO3, Ceram. Int. 48 (1), 702 (2022). DOI: 10.1016/j.ceramint.2021.09.150.
  • P. Jaiban et al., Dielectric and ferroelectric properties of Nb-doped Ba0.7Ca0.3TiO3 ceramics, Ferroelectrics 533 (1), 165 (2018). DOI: 10.1080/00150193.2018.1470835.
  • Y. Lan et al., Effects of Bi doping on structural and magnetic properties of double perovskite oxides Sr2FeMoO6, Phys. Lett. A. 380 (37), 2962 (2016). DOI: 10.1016/j.physleta.2016.06.057.
  • K. M. Zhidel et al., Ferroelectric and magnetic properties of 0.5BiFeO3-0.5PbFe0.5Nb0.5O3 ceramics, Ferroelectrics. 576 (1), 163 (2021). DOI: 10.1080/00150193.2021.1888275.
  • E. I. Sitalo et al., Grain structure and dielectric characteristics of (1 – x − y)BiFeO3-xPbFe0.5Nb0.5O3-yPbTiO3 ceramics, Ferroelectrics. 576 (1), 111 (2021). DOI: 10.1080/00150193.2021.1888268.
  • A. S. Priya, and D. Geetha, Studies on the multiferroic properties and impedance analysis of (La, Cu) BiFeO3 prepared by sol-gel method, Ferroelectrics. 573 (1), 104 (2021). DOI: 10.1080/00150193.2021.1890467.
  • R. K. Parida et al., Dielectric and ferroelectric investigations of barium doped double perovskite Pb2BiVO6 for electronic and optical devices, Mater. Chem. Phys. 231, 372 (2019). DOI: 10.1016/j.matchemphys.2019.04.051.
  • D. Singh et al., Ferroelectricity and ferromagnetism in Fe-doped barium titanate ceramics, Ferroelectrics. 573 (1), 63 (2021). DOI: 10.1080/00150193.2021.1890464.
  • H. Wu et al., Structural, magnetic, dielectric and optical properties of double-perovskite Bi2FeCrO6 ceramics synthesized under high pressure, J. Alloys Compd. 819, 153007 (2020). DOI: 10.1016/j.jallcom.2019.153007.
  • A. K. Panda et al., Transport and semiconducting behavior of Ca2BiNbO6 new inorganic double perovskite, Appl. Phys. A. 127 (12), 1 (2021). DOI: 10.1007/s00339-021-05105-4.
  • S. Sen et al., Improved optical, dielectric, impedance, and magnetic properties of (BiFeO3)0.6(CaTiO3)0.4 for multifunctional utilities, Inorg. Chem. Commun. 142, 109664 (2022). DOI: 10.1016/j.inoche.2022.109664.
  • L. Sahoo et al., Structural, optical dielectric and ferroelectric properties of double perovskite BaBiFeTiO6, Inorg. Chem. Commun. 146, 110102 (2022). DOI: 10.1016/j.inoche.2022.110102.
  • F. Izumi, and R. A. Dilanian, Recent research developments in physics, Transw. Res. Netw. 3 (Part II), 699 (2002).
  • F. Brahma et al., Multiferroic behaviour in ‘Bi’ doped solid solution SmFeO3-BaTiO3 perovskite system, Ceram. Int. 48 (13), 18286 (2022). DOI: 10.1016/j.ceramint.2022.03.087.
  • H. T. Lin et al., Modeling the dielectric response and relaxation spectra of relaxor ferroelectrics, J. Am. Ceram. Soc. 82 (10), 2698 (2004). DOI: 10.1111/j.1151-2916.1999.tb02144.x.
  • L. Sahoo et al., Enhanced room temperature relative permittivity and low dielectric loss ferroelectric double perovskite for energy storage applications, Mater. Sci. Eng. B. 294, 116561 (2023). DOI: 10.1016/j.mseb.2023.116561.
  • J. Pal et al., Detailed investigation on structural, dielectric, magnetic and magneto dielectric properties of BiFeO3-BaSrTiO3 solid solutions, J. Magn. Magn. Mater. 441, 339 (2017). DOI: 10.1016/j.jmmm.2017.05.047.
  • N. K. Karan, et al., Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3), ionic conductivity and dielectric relaxation, Solid State Ionics. 179 (19–20), 689 (2008). DOI: 10.1016/j.ssi.2008.04.034.
  • C. G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies, Phys. Rev. 83 (1), 121 (1951). DOI: 10.1103/PhysRev.83.121.
  • R. K. Parida et al., Multifunctional character of revived La-modified lithium titanate electrolyte: solar cell devices at a glance, J. Mater. Sci: Mater. Electron. 31 (23), 21591 (2020). DOI: 10.1007/s10854-020-04672-1.
  • D. C. Sinclair et al., CaCu3Ti4O12: One-step internal barrier layer capacitor, Appl. Phys. Lett. 80 (12), 2153 (2002). DOI: 10.1063/1.1463211.
  • V. I. Gibalov, and G. J. Pietsch, Dynamics of dielectric barrier discharges in different arrangements, Plasma Sources Sci. Technol. 21 (2), 024010 (2012). DOI: 10.1088/0963-0252/21/2/024010.
  • S. Bhattacharjee et al., Dielectric and magnetic behavior of Sr-modified vanadium based double perovskite, Mater. Sci. Eng. B, 271, 115234 (2021). DOI: 10.1016/j.mseb.2021.115234.
  • E. H. Nicollian, and J. R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology, New York: John Willey & Sons; 1982
  • P. Matheswaran et al., AC and dielectric properties of vacuum evaporated InTe bilayer thin films, Mater. Sci. Eng. B. 174 (1–3), 269 (2010). DOI: 10.1016/j.mseb.2010.03.008.
  • K. Prabakar et al., Dielectric properties of Cd0.6Zn0.4Te thin films, Phys. Stat. Sol. (a) 199 (3), 507 (2003). DOI: 10.1002/pssa.200306628.
  • S. G. Lu et al., Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics, Appl. Phys. Lett. 85 (22), 5319 (2004). DOI: 10.1063/1.1829794.
  • P. K. Bajpai, Dielectric relaxation phenomena in some lead and non-lead based ferroelectric relaxor materials: recent advances, SSP. 189, 233 (2012). DOI: 10.4028/www.scientific.net/SSP.189.233.
  • B. N. Parida et al., Ferroelectric and optical modulations of double perovskite Ba2BiVO6, J. Mol. Struct. 1189, 288 (2019). DOI: 10.1016/j.molstruc.2019.04.043.
  • B. Dey et al., Observation of room temperature d0 ferromagnetism, bandgap narrowing, zero dielectric loss, dielectric enhancement in highly transparent p-type Na-doped rutile TiO2 compounds for spintronics applications, J. Alloys Compd. 930, 167442 (2023). DOI: 10.1016/j.jallcom.2022.167442.
  • A. K. Panda et al., Structural, electrical and optical modulation of polycrystalline ceramic Pb0.5Ca1.5BiNbO6, Indian J. Phys. 97 (5), 1397 (2023). DOI: 10.1007/s12648-022-02489-8.
  • A. K. Jonscher, Universal Relaxation Law. London: Chelsea Dielectrics Press; 1996
  • L. Sahoo et al., Revived BBFTO double perovskite with improved dielectric properties for some possible device applications, J. Mater. Sci. Mater. Electron. 34, 1019 (2023). DOI: 10.1007/s10854-023-10434-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.