57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural, dielectric, impedance, and electric modulus characteristics of Y2CaCuO5 high-k dielectric ceramics

ORCID Icon &
Pages 127-142 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 10 Dec 2023

References

  • J. A. Kittl et al., High-k dielectrics for future generation memory devices, Microelectron. Eng. 86 (7–9), 1789 (2009). DOI: 10.1016/j.mee.2009.03.045.
  • R. Famery and F. Queyroux, Crystal structure refinement of Y2Cu2O5 from single crystal X-ray diffraction data, Mater. Res. Bull. 24 (3), 275 (1989). DOI: 10.1016/0025-5408(89)90212-2.
  • R. D. Clark, Emerging applications for high K materials in VLSI technology, Materials (Basel) 7 (4), 2913 (2014). DOI: 10.3390/ma7042913.
  • S. P. Pavunny et al., Structural and electrical properties of lanthanum gadolinium oxide: ceramic and thin films for high-k application, Integr. Ferroelectr. 125 (1), 44 (2011). DOI: 10.1080/10584587.2011.574039.
  • M. Houssa et al., Electrical properties of high-κ gate dielectrics: challenges, current issues, and possible solutions, Mater. Sci. Eng. R Rep. 51 (4–6), 37 (2006). DOI: 10.1016/j.mser.2006.04.001.
  • M. R. Visokay et al., Application of HfSiON as a gate dielectric material, Appl. Phys. Lett. 80 (17), 3183 (2002). DOI: 10.1063/1.1476397.
  • U. Adem et al., Magnetodielectric coupling by exchange striction in Y2Cu2O5, Eur. Phys. J. B, 71, 393 (2009). DOI: 10.1140/epjb/e2009-00209-1.
  • J. L. Garcı́a-Muñoz and J. Rodrı́guez-Carvajal, Structural characterization of R2Cu2O5 (R = Yb, Tm, Er, Y, and Ho) oxides by neutron diffraction, J. Solid State Chem. 115 (2), 324 (1995). DOI: 10.1006/jssc.1995.1141.
  • S.-W. Cheong et al., Field-induced transitions in Y2Cu2O5, Phys. Rev. B Condens. Matter 38 (10), 7013 (1988). DOI: 10.1103/PhysRevB.38.7013.
  • B. L. Ramakrishna, E. W. Ong, and Z. Iqbal, Magnetic properties of Y2Cu2O5, Solid State Commun. 68 (8), 775 (1988). DOI: 10.1016/0038-1098(88)90062-2.
  • T. Kimura et al., Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B 67 (18), 180401 (2003). DOI: 10.1103/PhysRevB.67.180401.
  • D. C. Sinclair et al., CaCu3Ti4O12: one-step internal barrier layer capacitor, Appl. Phys. Lett. 80 (12), 2153 (2002). DOI: 10.1063/1.1463211.
  • S. Sarkar, P. Kumar Jana, and B. K. Chaudhuri, Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide, Appl. Phys. Lett. 92 (2), 022905 (2008). DOI: 10.1063/1.2834854.
  • P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, TbFeO3 ceramic: an exciting colossal dielectric with ferroelectric properties, Phys. Status Solidi B 257 (1), 1900236 (2020). DOI: 10.1002/pssb.201900236.
  • T.-F. Zhang et al., Oxygen-vacancy-related relaxation and conduction behavior in (Pb1-xBax)(Zr0.95Ti0.05)O3 ceramics, AIP Adv. 4 (10), 107141 (2014). DOI: 10.1063/1.4900610.
  • R. K. Panda et al., Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles, J. Alloys Compd. 615, 899 (2014). DOI: 10.1016/j.jallcom.2014.07.031.
  • S. Amhil et al., Overlapping large polaron tunneling conduction process in the ordered defect compound p-CuIn3Se5, Mater. Res. Express 5 (8), 085903 (2018). DOI: 10.1088/2053-1591/aab53c.
  • R. Das and R. N. P. Choudhary, Studies of structural, dielectric relaxor and electrical characteristics of lead-free double Perovskite:Gd2NiMnO6, Solid State Sci. 87, 1 (2019). DOI: 10.1016/j.solidstatesciences.2018.10.020.
  • R. Rekha Sahoo and R. N. P. Choudhary, Studies of structural, dielectric and electrical characteristics of YBaCuFeO5 ceramics, J. Mater. Sci. Mater. Electron. 33 (19), 15704 (2022). DOI: 10.1007/s10854-022-08473.
  • P. Gupta et al., Structural, dielectric, impedance, and modulus spectroscopy of La3TiVO9 ceramic, Phys. Lett. A 384 (33), 126827 (2020). DOI: 10.1016/j.physleta.2020.126827.
  • D. C. Sinclair and A. R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance, J. Appl. Phys. 66 (8), 3850 (1989). DOI: 10.1063/1.344049.
  • R. Rai et al., Impedance spectroscopy and piezoresponse force microscopy analysis of lead-free (1−x)K0.5Na0.5NbO3−xLiNbO3 ceramics, Curr. Appl. Phys. 13 (2), 430 (2013). DOI: 10.1016/j.cap.2012.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.