60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of lead free multidoped ferroelectric material: (Bi0.85Nd0.15)(Fe0.5Ti0.5)O3

, , &
Pages 171-186 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 10 Dec 2023

References

  • J. Gao et al., Laminated modulation of tricritical ferroelectrics exhibiting highly enhanced dielectric permittivity and temperature stability, Adv. Funct. Mater. 29 (17), 1807162 (2019). DOI: 10.1002/adfm.201807162.
  • N. Hur et al., Electric polarization reversal and memory in a multiferroic material induced by magnetic fields, Nature. 429 (6990), 392 (2004). DOI: 10.1038/nature02572.
  • G. Chen et al., Bismuth ferrite materials for solar cells: Current status and prospects, Mater. Res. Bull. 110, 39 (2019). DOI: 10.1016/j.materresbull.2018.10.011.
  • M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38 (8), R123 (2005). DOI: 10.1088/0022-3727/38/8/R01.
  • S. Karimi et al., Nd-doped BiFeO3 ceramic with antipolar order, Appl. Phys. Lett. 94, 112903 (2009).
  • N. Kumar et al., R.N.P Choudhary, structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.1)O3, J. Alloys Compd. 688, 858 (2016). DOI: 10.1016/j.jallcom.2016.07.009.
  • S. Karimi et al., Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics, J. Mater. Sci. 44 (19), 5102 (2009). DOI: 10.1007/s10853-009-3545-1.
  • D. Maurya et al., Magnetic studies of multiferroic Bi(1-x)Sm(x)FeO(3) ceramics synthesized by mechanical activation assisted processes, J. Phys. Condens. Matter. 21 (2), 026007 (2009). DOI: 10.1088/0953-8984/21/2/026007.
  • C. Fanggao et al., Effect of gadolinium substitution on dielectric properties of bismuth ferrite, J. Rare Earths. 24 (1), 273 (2006). DOI: 10.1016/S1002-0721(07)60379-2.
  • V. A. Khomchenko et al., Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite,J. Appl. Phys. 103, 024105 (2008).
  • A. Ghosh et al., Electronic and magnetic properties of lanthanum and strontium doped bismuth ferrite: a first- principle study, Sci. Rep. 9 (1), 194 (2019). DOI: 10.1038/s41598-018-37339-3.
  • I. Ahmed et al., A detailed investigation of lanthanum substituted bismuth ferrite for enhanced structural, optical, dielectric, magnetic and ferroelectric properties, Results Phys. 38, 105584 (2022). DOI: 10.1016/j.rinp.2022.105584.
  • D. Kan et al., Universal behaviour and electric-field-induced structural transition in rare-earth-substituted BiFeO3, Adv. Funct. Mater. 20 (7), 1108 (2010). DOI: 10.1002/adfm.200902017.
  • C. Michel et al., The atomic structure of BiFeO3, Solid State Commun. 7 (9), 701 (1969). DOI: 10.1016/0038-1098(69)90597-3.
  • K. Abe et al., Leakage current properties of cation-substituted BiFeO3 ceramics, Jpn. J. Appl. Phys. 49 (9S), 09MB01 (2010). DOI: 10.1143/JJAP.49.09MB01.
  • X. Qi et al., Multifunctional iron-based metal oxide nanostructured materials, Synthesis Appl. Phys. Lett. 86, 062903 (2005).
  • A. Srinivas et al., Observation of ferroelectromagnetic nature in rare-earth-substituted bismuth iron titanate, Appl. Phys. Lett. 83 (11), 2217 (2003). DOI: 10.1063/1.1610255.
  • A. Altomare et al., EXPO2013: a kit of tools for phasing crystal structures from powder data, J. Appl. Crystallogr. 46 (4), 1231 (2013). DOI: 10.1107/S0021889813013113.
  • B. R. Shaikh et al., Microstructure, magnetic and dielectric interplay in NiCuZn ferrite with rare earth doping for magneto-dielectric applications, J. Magn. Magn. Mater. 537, 168229 (2021). DOI: 10.1016/j.jmmm.2021.168229.
  • S. K. Rout et al., Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method, J. Alloys Compd. 477 (1–2), 706 (2009). DOI: 10.1016/j.jallcom.2008.10.125.
  • J. R. Macdonald, and W. B. Johnson, Impedance Spectroscopy Theory, Experiments and Applications. Hoboken: Wiley; 2005.
  • S. Sen, and R. N. P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3, ceramics, Mater. Chem. Phys. 87 (2–3), 256 (2004). DOI: 10.1016/j.matchemphys.2004.03.005.
  • S. Brahma, R. N. P. Choudhary, and A. K. Thakur, AC impedance analysis of LaLi-Mo2O8 electroceramics, Physica B. 355 (1–4), 188 (2005). DOI: 10.1016/j.physb.2004.10.091.
  • N. Masta, D. Triyono, and H. Laysandra, Electrical properties Sr2FeTiO6 double perovskite material synthesized by sol-gel method, AIP Conf. Proc. 1862, 030036 (2017).
  • D. K. Mahato, A. Dutta, and T. P. Sinha, Impedance spectroscopy analysis of double perovskite Ho2NiTiO6, J. Mater. Sci. 45 (24), 6757 (2010). DOI: 10.1007/s10853-010-4771-2.
  • R. Das, and R. N. P. Choudhary, Studies of structural, dielectric relaxor and electrical characteristics of lead-free double Perovskite: Gd2NiMnO6, Solid State Sci. 87, 1 (2019). DOI: 10.1016/j.solidstatesciences.2018.10.020.
  • I. Soudani et al., Investigation of structural, morphological, and transport properties of a multifunctional Li-ferrite compound, RSC Adv. 12 (29), 18697 (2022). DOI: 10.1039/d2ra02757g.
  • K. Parida, S. K. Dehury, and R. N. P. Choudhary, Structural, electrical and magneto-electric characteristics of BiMgFeCeO6 ceramics, Phys. Lett. A. 380 (48), 4083 (2016). DOI: 10.1016/j.physleta.2016.10.022.
  • S. Praharaj, and D. Rout, Study of electrical properties of Pb(Yb0.5Ta0.5)O3 by impedance spectroscopy, IOP Conf. Ser: Mater. Sci. Eng. 149, 012181 (2016). DOI: 10.1088/1757-899X/149/1/012181.
  • N. K. Karan et al., Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation, Solid State Ionics. 179 (19–20), 689 (2008). DOI: 10.1016/j.ssi.2008.04.034.
  • A. K. Jonscher, Universal Relaxation Law. London: Chelsea Dielectrics Press, 1996.
  • H. Jain, and J. N. Mundy, Analysis of AC conductivity of glasses by a power law relationship, J. Non-Cryst. Solids. 91 (3), 315 (1987). DOI: 10.1016/S0022-3093(87)80342-3.
  • H. Jain, and C. H. Hsieh, ‘Window’ effect in the analysis of frequency dependence of ionic conductivity, J. Solids Non Cryst 172-174, 1408 (1994). DOI: 10.1016/0022-3093(94)90669-6.
  • D. P. Almond, and A. R. West, Impedance and modulus spectroscopy of “real” dispersive conductors, Solid State Ion. 11 (1), 57 (1983). DOI: 10.1016/0167-2738(83)90063-2.
  • S. Chatterjee et al., Complex impedance studies of sodium pyrotungstate-Na2W2O7, Phys. Stat. Sol. (a). 201 (3), 588 (2004). DOI: 10.1002/pssa.200306741.
  • D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61 (9), 1267 (1998). DOI: 10.1088/0034-4885/61/9/002.
  • B. N. Parida et al., Ferroelectric, pyroelectric and electrical properties of new tungsten-broze tantalate, Curr. App. Phy. 13 (9), 1880 (2013). DOI: 10.1016/j.cap.2013.07.018.
  • N. Kumar et al., Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution, RSC Adv. 8 (64), 36939 (2018). DOI: 10.1039/c8ra02306a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.