206
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Pollen wall and tapetum development in Plantago major L. (Plantaginaceae): assisting self-assembly

, , &
Pages 81-111 | Received 12 Nov 2015, Accepted 23 Jan 2016, Published online: 09 May 2016

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA. 2004. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16: 3098–3109. doi:10.1105/tpc.104.024406.
  • Ahlers F, Bubert H, Steuernagel S, Wiermann R. 2000. The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L. Zeitschrift für Naturforschung C 55: 129–136. doi:10.1515/znc-2000-3-401.
  • Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K. 2004. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. The Plant Journal 39: 170–181. doi:10.1111/tpj.2004.39.issue-2.
  • Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62: 437–460. doi:10.1146/annurev-arplant-042809-112312.
  • Audran J-C. 1981. Pollen and tapetum development in Ceratozamia mexicana (Cycadaceae): Sporal origin of the exinic sporopollenin in cycads. Review of Palaeobotany and Palynology 33: 315–346. doi:10.1016/0034-6667(81)90091-9.
  • Blackmore S. 1990. Sporoderm homologies and morphogenesis in land plants, with a discussion on Echinops sphaerocephala (Compositae). Plant Systematics and Evolution 5: 1–12.
  • Blackmore S, Barnes SH. 1987. Pollen wall morphogenesis in Tragopogon porrifolius L. (Compositae: Lactuceae) and its taxonomic significance. Review of Palaeobotany and Palynology 52: 233–246. doi:10.1016/0034-6667(87)90056-X.
  • Blackmore S, Barnes SH. 1988. Pollen ontogeny in Catananche caerulea L. (Compositae: Lactuceae). I. Premeiotic phase to establishment of tetrads. Annals of Botany 62: 605–614.
  • Blackmore S, Claugher D. 1987. Observations on the substructural organization of the exine. Fagus sylvatica L. (Fagaceae) and Scorzonera hispanica L. (Compositae: Lactuceae). Review of Palaeobotany and Palynology 5: 175–184.
  • Blackmore S, Wortley AH, Skvarla JJ, Gabarayeva NI, Rowley JR. 2010. Developmental origins of structural diversity in pollen walls of Compositae. Plant Systematics and Evolution 284: 17–32. doi:10.1007/s00606-009-0232-2.
  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. 2007. Pollen wall development in flowering plants. New Phytologist 174: 483–498. doi:10.1111/nph.2007.174.issue-3.
  • Burbulis IE, Winkel-Shirley B. 1999. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proceedings of the National Academy of Sciences 96: 12929–12934. doi:10.1073/pnas.96.22.12929.
  • Cecich RA. 1984. The histochemistry and ultrastructure of Jack Pine microsporangia during the winter. American Journal of Botany 71: 851. doi:10.2307/2443476.
  • Collinson ME, Hemsley AR, Taylor WA. 1993. Sporopollenin exhibiting colloidal organization in spore walls. Grana 32, Supplement 1: 31–39. doi:10.1080/00173139309427449.
  • De Leeuw JW, Versteegh GJM, Van Bergen PF. 2006. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecology 182: 209–233. doi:10.1007/s11258-005-9027-x.
  • Dickinson HG. 1976. The deposition of acetolysis-resistant polymers during the formation of pollen. Pollen et Spores 18: 321–334.
  • Dickinson HG, Potter U. 1976. The development of patterning in the alveolar sexine of Cosmos bipinnatus. New Phytologist 76: 543–550. doi:10.1111/nph.1976.76.issue-3.
  • Dickinson HG, Sheldon JM. 1984. A radial system of microtubules extending between the nuclear envelope and the plasma membrane during early male haplophase in flowering plants. Planta 161: 86–90. doi:10.1007/BF00951464.
  • Dominguez E, Mercado JA, Quesada MA, Heredia A. 1999. Pollen sporopollenin: Degradation and structural elucidation. Sexual Plant Reproduction 12: 171–178. doi:10.1007/s004970050189.
  • Echlin P. 1971. The role of the tapetum during microsporogenesis of angiosperms. In: Heslop-Harrison J, ed. Pollen development and physiology, 41–61. London: Butterworths.
  • El-Ghazaly G, Jensen WA. 1987. Development of wheat (Triticum aestivum) pollen. II. Histochemical differentiation of wall and Ubisch bodies during development. American Journal of Botany 74: 1396–1418. doi:10.2307/2444317.
  • Gabarayeva NI. 1987. Ultrastructure and development of sporoderm in Manglietia tenuipes (Magnoliaceae) in the course of the tetrad period: The formation of primexine in connection with cytoplasmic organelles activity. Botanicheski Zhurnal 72: 281–290. (In Russian, with English summary).
  • Gabarayeva NI. 1990. Hypothetical ways of exine structure determination. Botanicheski Zhurnal 75: 1353–1362. (In Russian, with English summary).
  • Gabarayeva NI. 1991a. Patterns of development in primitive angiosperm pollen. In: Blackmore S, Barnes SH, eds. Pollen and spores, 257–268. Oxford: Clarendon Press.
  • Gabarayeva NI. 1991b. Ultrastructure and development of exine and orbicules in Magnolia delavayi (Magnoliaceae) in the tetrad and at the beginning of post-tetrad period. Botanicheski Zhurnal 76: 10–19. (In Russian, with English summary).
  • Gabarayeva NI. 1993. Hypothetical ways of exine structure determination. Grana 32, Supplement 2: 54–59. doi:10.1080/00173139309428980.
  • Gabarayeva NI. 2000. Principles and recurrent themes in sporoderm development. In: Harley MM, Morton CM, Blackmore S, eds. Pollen and spores: Morphology and biology, 1–17. Whitstable: Kent.
  • Gabarayeva NI. 2014. Role of genetic control and self-assembly in gametophyte sporoderm ontogeny: Hypotheses and experiment. Russian Journal of Developmental Biology 45: 177–195. doi:10.1134/S1062360414040031.
  • Gabarayeva NI, Blackmore S, Rowley JR. 2003a. Observations on the experimental destruction and substructural organisation of the pollen wall of some selected Gymnosperms and Angiosperms. Review of Palaeobotany and Palynology 124: 203–226. doi:10.1016/S0034-6667(02)00245-2.
  • Gabarayeva NI, Grigorjeva VV. 2002. Exine development in Stangeria eriopus (Stangeriaceae): Ultrastructure and substructure, SP accumulation, the equivocal character of the aperture, and stereology of microspore organelles. Review of Palaeobotany and Palynology 122: 185–218. doi:10.1016/S0034-6667(02)00183-5.
  • Gabarayeva NI, Grigorjeva VV. 2010. Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae): Self-assembly as the underlying cause of development. Grana 49: 91–114. doi:10.1080/00173131003650920.
  • Gabarayeva NI, Grigorjeva VV. 2011. Sporoderm development in Swida alba (Cornaceae), interpreted as a self-assembling colloidal system. Grana 50: 81–101. doi:10.1080/00173134.2011.580448.
  • Gabarayeva NI, Grigorjeva VV. 2012. Sporoderm development and substructure in Magnolia sieboldii and other Magnoliaceae: An interpretation. Grana 51: 119–147. doi:10.1080/00173134.2012.688863.
  • Gabarayeva NI, Grigorjeva VV. 2013. Experimental modelling of exine-like structures. Grana 52: 241–257. doi:10.1080/00173134.2013.818165.
  • Gabarayeva NI, Grigorjeva VV. 2014. Sporoderm and tapetum development in Eupomatia laurina (Eupomatiaceae). An interpretation. Protoplasma 251: 1321–1345. doi:10.1007/s00709-014-0631-2.
  • Gabarayeva NI, Grigorjeva VV, Kosenko Y. 2013a. I. Primexine development in Passiflora racemosa Brot.: Overlooked aspects of development. Plant Systematics and Evolution 299: 1013–1035. doi:10.1007/s00606-013-0757-2.
  • Gabarayeva NI, Grigorjeva VV, Kosenko Y. 2013b. II. Exine development in Passiflora racemosa Brot.: Post-tetrad period. Overlooked aspects of development. Plant Systematics and Evolution 299: 1037–1055. doi:10.1007/s00606-013-0756-3.
  • Gabarayeva N, Grigorjeva V, Polevova S. 2011. Exine and tapetum development in Symphytum officinale (Boraginaceae). Exine substructure and its interpretation. Plant Systematics and Evolution 296: 101–120. doi:10.1007/s00606-011-0479-2.
  • Gabarayeva NI, Grigorjeva VV, Polevova S. 2014. Sporoderm and tapetum ontogeny in Juniperus communis (Cupressaceae). Connective structures between tapetum and microspores. Review of Palaeobotany and Palynology 206: 23–44. doi:10.1016/j.revpalbo.2014.03.004.
  • Gabarayeva NI, Grigorjeva VV, Rowley JR. 2003b. Sporoderm ontogeny in Cabomba aquatica (Cabombaceae). Review of Palaeobotany and Palynology 127: 147–173. doi:10.1016/S0034-6667(03)00081-2.
  • Gabarayeva NI, Grigorjeva VV, Rowley JR. 2010a. Sporoderm development in Acer tataricum (Aceraceae): An interpretation. Protoplasma 247: 65–81. doi:10.1007/s00709-010-0141-9.
  • Gabarayeva NI, Grigorjeva VV, Rowley JR. 2010b. A new look at sporoderm ontogeny in Persea americana and the hidden side of development. Annals of Botany 105: 939–955. doi:10.1093/aob/mcq075.
  • Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR. 2009a. Sporoderm development in Trevesia burckii (Araliaceae). I. Tetrad period: Further evidence for the participation of self-assembly processes. Review of Palaeobotany and Palynology 156: 211–232. doi:10.1016/j.revpalbo.2008.12.001.
  • Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR. 2009b. Sporoderm development in Trevesia burckii (Araliaceae). II. Post-tetrad period: Further evidence for participating of self-assembly processes. Review of Palaeobotany and Palynology 156: 233–247. doi:10.1016/j.revpalbo.2009.01.004.
  • Gabarayeva NI, Hemsley AR. 2006. Merging concepts: The role of self-assembly in the development of pollen wall structure. Review of Palaeobotany and Palynology 138: 121–139. doi:10.1016/j.revpalbo.2005.12.001.
  • Gabarayeva NI, Hemsley AR. 2010. The formation of pattern in microcosm: Role of self-assembly in development of complex walls of biological subjects. Biology Bulletin Reviews 71: 310–336.
  • Goodwin BC, Kauffman S, Murray JD. 1993. Is morphogenesis an intrinsically robust process? Journal of Theoretical Biology 163: 135–144. doi:10.1006/jtbi.1993.1112.
  • Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza A, Heitz T, Douglas CJ, Legrand M. 2010. Analysis of tetraketide α-pyrone reductase function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. The Plant Cell 22: 4067–4083. doi:10.1105/tpc.110.080036.
  • Griffiths PC, Hemsley AR. 2002. Raspberries and muffins—Mimicking biological pattern formation. Colloids and Surfaces B: Biointerfaces 25: 163–170. doi:10.1016/S0927-7765(01)00316-2.
  • Griffiths PC, Wellappili C, Hemsley AR, Stephens R. 2004. Ultra-porous hollow particles. Colloid and Polymer Science 282: 1155–1159. doi:10.1007/s00396-003-1041-8.
  • Grigorjeva V, Gabarayeva N. 2015. The development of sporoderm, tapetum and Ubisch bodies in Dianthus deltoides (Caryophyllaceae): Self-assembly in action. Review of Palaeobotany and Palynology 219: 1–27. doi:10.1016/j.revpalbo.2015.03.005.
  • Gubatz S, Herminghaus S, Meurer B, Strack D, Wiermann R. 1986. The location of hydroxycinnamic acid amides in the exine of Corylus pollen. Pollen et Spores 28: 347–354.
  • Gubatz S, Rittscher M, Meuter A, Nagler A, Wiermann R. 1993. Tracer experiments on sporopollenin biosynthesis. Grana Supplement 32: 12–17. doi:10.1080/00173139309427447.
  • Halbritter H. 1998. Preparing living pollen material for scanning electron microscopy using 2,2-dimethoxypropane (DMP) and critical-point drying. Biotechnic & Histochemistry 73: 137–143. doi:10.3109/10520299809140519.
  • Halbritter H, Hesse M. 2004. Principal modes of infoldings in tricolp(or)ate angiosperm pollen. Grana 43: 1–14. doi:10.1080/00173130310017625.
  • Halbritter H, Hesse M. 2005. Specific ornamentation of orbicular walls and pollen grains, as exemplified by Acanthaceae. Grana 44: 308–313. doi:10.1080/00173130510031645.
  • Hemsley AR. 1998. Non-linear variation in simulated complex pattern development. Journal of Theoretical Biology 192: 73–79. doi:10.1006/jtbi.1997.0610.
  • Hemsley AR, Collinson ME, Brain APR. 1992. Colloidal crystal-like structure of sporopollenin in the megaspore walls of recent Selaginella and similar fossil spores. Botanical Journal of the Linnean Society 108: 307–320. doi:10.1111/j.1095-8339.1992.tb00247.x.
  • Hemsley AR, Collinson ME, Vicent B, Griffiths PC, Jenkins PD. 2000. Self-assembly of colloidal units in exine development. In: Harley MM, Morton CM, Blackmore S, eds. Pollen and spores: Morphology and biology, 1–44. Kew: Kew Royal Botanical Gardens Press.
  • Hemsley AR, Gabarayeva NI. 2007. Exine development: The importance of looking through a colloid chemistry “window”. Plant Systematics and Evolution 263: 25–49. doi:10.1007/s00606-006-0465-2.
  • Hemsley AR, Griffiths PC. 2000. Architecture in the microcosm: Biocolloids, self-assembly and pattern formation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 358: 547–564. doi:10.1098/rsta.2000.0545.
  • Hemsley AR, Griffiths PC, Mathias R, Moore SEM. 2003. A model for the role of surfactants in the assembly of exine sculpture. Grana 42: 38–42. doi:10.1080/00173130310008562.
  • Hemsley AR, Jenkins PD, Collinson ME, Vincent B. 1996. Experimental modelling of exine self-assembly. Botanical Journal of the Linnean Society 121: 177–187. doi:10.1111/j.1095-8339.1996.tb00752.x.
  • Hemsley AR, Lewis J, Griffiths PC. 2004. Soft and sticky development: Some underlying reasons for microarchitectural pattern convergence. Review of Palaeobotany and Palynology 130: 105–119. doi:10.1016/j.revpalbo.2003.12.004.
  • Hemsley AR, Vincent B, Collinson ME, Griffiths PC. 1998. Simulated self-assembly of spore exines. Annals of Botany 82: 105–109. doi:10.1006/anbo.1998.0653.
  • Herminghaus S, Gubatz S, Arendt S, Wiermann R. 1988. The occurrence of phenols as degradation products of natural SP – a comparison with “synthetic SP”. Zeitschrift für Naturforschung 43C: 491–500.
  • Heslop-Harrison J. 1976. The adaptive significance of the exine. In: Ferguson IK, Muller J, eds. The evolutionary significance of the exine, 27–37. London: Academic Press.
  • Hesse M. 1986. Orbicules and the ektexine are homologous sporopollenin concretions in Spermatophyta. Plant Systematics and Evolution 153: 37–48. doi:10.1007/BF00989416.
  • Huysmans S, El-Ghazaly G, Nilsson S, Smets E. 1997. Systematic value of tapetal orbicules: A preliminary survey of the Cinchonoideae (Ruviaceae). Canadian Journal of Botany 75: 815–826. doi:10.1139/b97-091.
  • Huysmans S, El-Ghazaly G, Smets E. 1998. Orbicules in angiosperms: Morphology, function, distribution, and relation with tapetum types. The Botanical Review 64: 240–272. doi:10.1007/BF02856566.
  • Ingber D. 1993. Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science 104: 613–627.
  • Ingber DE, Jamieson JD. 1985. Cells as tensegrity structures: Architectural regulation of histo-differentiation by physical forces transduced over basement membrane. In: Andersson LC, Gahmberg GG, Ekblom P, eds. Gene expression during normal and malignant differentiation, 13–32. Orlando: Academic Press.
  • Kauffman SA. 1991. Antichaos and adaptation. Scientific American 265: 64–70. doi:10.1038/scientificamerican0891-78.
  • Kauffman SA. 1993. The origins of order. Oxford: Oxford University Press.
  • Kupila-Ahvenniemi S, Pihakaski S, Pihakaski K. 1978. Wintertime changes in the ultrastructure and metabolism of the microsporangiate strobili of the Scotch Pine. Planta 144: 19–29. doi:10.1007/BF00385003.
  • Kurakin A. 2005. Self-organization versus watchmaker: Stochastic dynamics of cellular organization. Biological Chemistry 386: 247–254. doi:10.1515/BC.2005.030.
  • Kurmann MH. 1989. Pollen wall formation in Abies concolor and a discussion on wall layer homologies. Canadian Journal of Botany 67: 2489–2504. doi:10.1139/b89-319.
  • Lecuit T. 2008. “Developmental mechanics”: Cellular patterns controlled by adhesion, cortical tension and cell division. Human Frontier Science Program Journal 2: 72–78.
  • Lintilhac PM. 2014. The problem of morphogenesis: Unscripted biophysical control systems in plants. Protoplasma 251: 25–36. doi:10.1007/s00709-013-0522-y.
  • Markham KR, Ryan KG, Gould KS, Rickards GK. 2000. Cell wall sited flavonoids in Lisianthus flower petals. Phytochemistry 54: 681–687. doi:10.1016/S0031-9422(00)00180-1.
  • Meuter-Gerhards A, Riegert S, Wiermann R. 1999. Studies on sporopollenin biosynthesis in Cucurbita maxima (Duch.) — II. The involvement of aliphatic metabolism. Journal of Plant Physiology 154: 431–436. doi:10.1016/S0176-1617(99)80279-X.
  • Meyer-Melikyan NR, Gabarayeva NI, Polevova SV, Grigorjeva VV, Kosenko YV, Tekleva MV. 2003. Development of pollen grain walls and accumulation of sporopollenin. Russian Journal of Plant Physiology 50: 330–338. doi:10.1023/A:1023818103172.
  • Moore SEM, Gabarayeva N, Hemsley AR. 2009. Morphological, developmental and ultrastructural comparison of Osmunda regalis L. spores with spore mimics. Review of Palaeobotany and Palynology 156: 177–184. doi:10.1016/j.revpalbo.2008.12.010.
  • Muravnik LE. 2007. Morphology and ultrastructure of the pericarp trichomes in Juglans species (Juglandaceae) in relation to synthesis of secondary metabolites. Botanicheski Zhurnal 92: 96–107. (In Russian with English abstract).
  • Muravnik LE, Shavarda AL. 2011. Pericarp peltate trichomes in Pterocarya rhoifolia: Histochemistry, ultrastructure, and chemical composition. International Journal of Plant Sciences 172: 159–172. doi:10.1086/657646.
  • Muravnik LE, Shavarda AL. 2012. Leaf glandular trichomes in Empetrum nigrum: Morphology, histochemistry, ultrastructure and secondary metabolites. Nordic Journal of Botany 30: 470–481. doi:10.1111/more.2012.30.issue-4.
  • Nick P. 2013. Moonlighting organelles – signals and cellular architecture. Protoplasma 250: 1–2. doi:10.1007/s00709-012-0477-4.
  • Niester-Nyveld C, Haubrich A, Kampendonk H, Gubatz S, Tenberge KB, Rittscher M, Wilmesmeier S, Wiermann R. 1997. Immunocytochemical localization of phenolic compounds in pollen walls using antibodies against p-coumaric acid coupled to bovine serum albumin. Protoplasma 197: 148–159. doi:10.1007/BF01288024.
  • Pacini E. 1990. Tapetum and microspore function. In: Blackmore S, Knox RB, eds. Microspores: Evolution and ontogeny, 213–237. London: Academic Press.
  • Pacini E, Franchi GG, Hesse M. 1985. The tapetum: Its form, function and possible phylogeny in Embryophyta. Plant Systematics and Evolution 149: 155–185. doi:10.1007/BF00983304.
  • Piffanelli P, Ross JHE, Murphy DJ. 1998. Biogenesis and function of the lipidic structures of pollen grains. Sexual Plant Reproduction 11: 65–80. doi:10.1007/s004970050122.
  • Rowley JR, Claugher D. 1991. Receptor-independent sporopollenin. Botanica Acta 104: 316–323. doi:10.1111/plb.1991.104.issue-4.
  • Rowley JR, Dahl AO. 1977. Pollen development in Artemisia vulgaris with special reference to glycocalyx material. Pollen et Spores 19: 169–284.
  • Rowley JR, Prijanto B. 1977. Selective destruction of the exine of pollen grains. Geophytology 7: 1–23.
  • Rowley JR, Skvarla JJ. 1993. Exine receptors. Grana 32, Supplement 2: 21–25. doi:10.1080/00173139309428974.
  • Rowley JR, Skvarla JJ, Gabarayeva NI. 1999. Exine development in Borago (Boraginaceae). 2. Free microspore stages. Taiwania 44: 212–229.
  • Rowley JR, Walles B. 1987. Origin and structure of Ubisch bodies in Pinus sylvestris. Acta Societatis Botanicorum Poloniæ 56: 215–227. doi:10.5586/asbp.1987.023.
  • Schopker H, Kneisel M, Beerhues L, Robenek H, Wiermann R. 1995. Phenylalanine ammonia-lyase and chalcone synthase in glands ofPrimula kewensis (W. Wats): Immunofluorescence and immunogold localization. Planta 196: 712–719. doi:10.1007/BF01106765.
  • Sheldon JM, Dickinson HG. 1983. Determination of patterning in the pollen wall of Lilium henryi. Journal of Cell Sciences 63: 191–208.
  • Southworth D. 1974. Solubility of pollen exines. American Journal of Botany 61: 36–44. doi:10.2307/2441242.
  • Southworth D. 1986. Substructural organization of pollen exines. In: Blackmore S, Ferguson IK, eds. Pollen and spores: Form and function, 61–69. London: Academic Press.
  • Southworth D, Jernstedt JA. 1995. Pollen exine development precedes microtubule rearrangement in Vigna unguiculata (Fabaceae): A model for pollen wall patterning. Protoplasma 187: 79–87. doi:10.1007/BF01280235.
  • Stone DE. 1987. Developmental evidence for the convergence of Sassafras (Laurales) and Heliconia (Zingiberales) pollen. Grana 26: 179–191. doi:10.1080/00173138709428914.
  • Suarez-Cervera M, Marquez J, Seoane-Camba J. 1995. Pollen grain and Ubisch body development in Platanus acerifolia. Review of Palaeobotany Palynology 85: 63–84. doi:10.1016/0034-6667(94)00086-Y.
  • Taylor ML, Hudson PJ, Rigg JM, Strandquist JN, Green JS, Thiemann TC, Osborn JM. 2012. Tapetum structure and ontogeny in Victoria (Nymphaeaceae). Grana 51: 107–118. doi:10.1080/00173134.2012.673635.
  • Thompson DA. 1917. On growth and form. Cambridge: Cambridge University Press.
  • Turner GW, Gershenzon J, Croteau RB. 2000. Development of peltate glandular trichomes of peppermint. Plant Physiology 124: 665–680. doi:10.1104/pp.124.2.665.
  • Van Bergen PF, Blokker P, Collinson ME, Sinninghe Damsté JS, De Leeuw JW. 2004. Structural biomacromolecules in plants: What can be learnt from the fossil record? In: Hemsley AR, Poole I, eds. The evolution of plant physiology, 134–154. Orlando: Academic Press.
  • Van Bergen PF, Collinson ME, Briggs DEG, De Leeuw JW, Scott AC, Evershed RP, Finch P. 1995. Resistant biomacromolecules in the fossil record. Acta Botanica Neerlandica 44: 319–342. doi:10.1111/plb.1995.44.issue-4.
  • Van Blaaderen A. 2006. Materials science: Colloids get complex. Nature 439: 545–546. doi:10.1038/439545a.
  • Van Uffelen GA. 1991. The control of spore wall formation. In: Blackmore S, Barnes SH, eds. Pollen and spores: Patterns of diversification, 89–102. Oxford: Clarendon Press.
  • Wagner GJ, Hrazdina G. 1984. Endoplasmic reticulum as a site of phenylpropanoid and flavonoid metabolism in Hippeastrum. Plant Physiology 74: 901–906. doi:10.1104/pp.74.4.901.
  • Wang Y, Lin Y-C, So J, Du Y, Lo C. 2013. Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. Physiologia Plantarum 149: 13–24. doi:10.1111/ppl.2013.149.issue-1.
  • Weber M, Halbritter H, Hesse M. 1998. The spiny pollen wall in Sauromatum (Araceae) – with special reference to the endexine. International Journal of Plant Sciences 159: 744–749. doi:10.1086/297592.
  • Wehling K, Niester C, Boon JJ, Willemse MTM, Wiermann R. 1989. p-Coumaric acid – a monomer in the sporopollenin skeleton. Planta 179: 376–380. doi:10.1007/BF00391083.
  • Wiermann R, Gubatz S. 1992. Pollen wall and sporopollenin. International Review of Cytology 140: 35–72.
  • Wilmesmeier S, Wiermann R. 1995. Influence of EPTC (S-Ethyl-Dipropyl-Thiocarbamate) on the composition of surface waxes and sporopollenin structure in Zea mays. Journal of Plant Physiology 146: 22–28. doi:10.1016/S0176-1617(11)81962-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.