138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modern pollen–vegetation relationship from the Mahasamund District (Chhattisgarh), central India: implications for palaeoecological reconstruction

& ORCID Icon
Pages 317-330 | Received 10 Jan 2023, Accepted 19 Oct 2023, Published online: 12 Dec 2023

References

  • Andersen ST. 1979. Identification of wild grass and cereal pollen [fossil pollen, Annulus diameter, surface sculpturing]. Aarbog: Danmarks Geologiske Undersoegelse (Denmark) 68–92.
  • Andersen TS, Bertelsen F. 1972. Scanning electron microscope studies of pollen of cereals and other grasses. Grana 12(2): 79–86. doi:10.1080/00173137209428830.
  • Anupama K, Ramesh BR, Bonnefille R. 2000. Modern pollen rain from the Biligirriagan-Melagiri hills of southern Eastern Ghats, India. Review of Palaeobotany and Palynology 108: 175–196. doi:10.1016/S0034-6667(99)00039-1.
  • Atluri JB, Ramana SV, Reddi CS. 2004. Explosive pollen release, wind-pollination and mixed mating in the tropical tree Shorea robusta Gaertn. f. (Dipterocarpaceae). Current Science 86(10): 1416–1419.
  • Barboni D, Bonnefille R. 2001. Precipitation signal in modern pollen rain from tropical forests of south India. Review of Palaeobotany and Palynology 114: 239–258. doi:10.1016/S0034-6667(01)00057-4.
  • Bera SK. 1990. Palynology of Shorea robusta (Dipterocarpaceae) in relation to pollen production and dispersal. Grana 29(3): 251–255. doi:10.1080/00173139009427758.
  • Beug HJ. 2004. Leitfaden der pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München: Verlag Dr. Friedrich Pfeil.
  • Bhattacharya A, Mondal S, Mandal S. 1999. Entomophilous pollen incidence with reference to atmospheric dispersal in eastern India. Aerobiologia 15: 311–315. doi:10.1023/A:1007690128025.
  • Birks HJB, Birks HH. 1980. Quaternary palaeoecology. London (reprinted 2004 by Blackburn Press, NJ): Edward Arnold.
  • Bradshaw RHW, Webb IIIT. 1985. Relationships between contemporary pollen vegetation data from Wisconsin Michigan, USA. Ecology 66: 721–737. doi:10.2307/1940533.
  • Bush DA. 1995. Modern pollen spectra from Madagascar. Palaeogeography, Palaeoclimatology, Palaeoecology 66: 63–73.
  • Calcote RR. 1998. Identifying forest stand types using pollen from forest hollows. Holocene 8: 423–432. doi:10.1191/095968398670894847.
  • Champion HG, Seth SK. 1968. A revised survey of forest types of India. New Delhi: Manager of Publications, Government of India Press.
  • Chauhan MS. 1994. Modern pollen/vegetation relationship in the tropical deciduous sal (Shorea robusta) forests in District Sidhi, Madhya Pradesh. Journal of Palynology 30: 165–175.
  • Chauhan MS. 1995. Origin and history of tropical deciduous sal (Shorea robusta Gaertn.) forests in Madhya Pradesh, India. The Palaeobotanist 43: 89–101.
  • Chauhan MS. 2008. Pollen deposition pattern in tropical deciduous sal (Shorea robusta) forests in Madhya Pradesh. Geophytology 37: 119–125.
  • Chauhan MS, Bera SK. 1990. Pollen morphology of some important plants of tropical deciduous sal (Shorea robusta) forest, District Sidhi, Madhya Pradesh. Geophytology 20: 30–36.
  • Chauhan MS, Quamar MF. 2010. Vegetation and climate change in southeastern Madhya Pradesh during late Holocene, based on pollen evidence. Jour. Geol. Soc. India 76: 143–150.
  • Chauhan MS, Quamar MF. 2012a. Mid-Holocene vegetation vis-à-vis climate change in southwestern Madhya Pradesh. Current Science 103 (12): 1455–1461.
  • Chauhan MS, Quamar MF. 2012b. Pollen records of vegetation and inferred climate changes in southwestern Madhya Pradesh (India) since the last ca. 3800 yrs. Jour. Geol. Soc. India. 80: 470-480.
  • Chauhan MS, Quamar MF. 2013. Pollen rain deposition pattern in tropical deciduous sal (Shorea robusta) forests in Shahdol District, southeastern Madhya Pradesh, India. Palaeobotanist 62: 47–53. doi:10.54991/jop.2013.334.
  • Curtis JT. 1930. The vegetation of Wisconsin: An ordination of plant communities. Madison, WI: The University of Wisconsin Press.
  • Dimbleby GW. 1957. Pollen analysis of terrestrial soils. The New Phytologist 56(1): 12–28. doi:10.1111/j.1469-8137.1957.tb07446.x.
  • Dimbleby GW. 1961. Soil pollen analysis. Journal of Soil Sciences 12(1): 1–10. doi:10.1111/j.1365-2389.1961.tb00891.x.
  • Erdtman G. 1952. Pollen morphology and plant taxonomy of angiosperms. Stockholm & Waltham, MA: Almquist & Wiksell, Chronica Botanica Co.
  • Faegri K, Iversen J. 1964. Text book of pollen analysis. Waltham, MA: Chronica Botanica Co.
  • Faegri K, Iversen J. 1989. Textbook of pollen analysis. Chichester: John Wiley & Sons.
  • Fagerland F. 1952. The real significance of pollen diagrams. BotaniskaNotiser 105: 185–224.
  • Favre E, Escarguel G, Suc JP, Vidal G, Thévenod L. 2008. A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover. Review of Palaeobotany and Palynology 148(1): 13–35. doi:10.1016/j.revpalbo.2007.08.003.
  • Flenley JR. 1973. The use of modern pollen-rain samples in the study of vegetational history of tropical regions. In: Birks H, West RG, eds. Quaternary plant ecology, 131–141. Oxford: 14th Symposium of British Ecological Society.
  • Grimm EC. 1990. TILIA and TILIA GRAPH, PC spreadsheet and graphics software for pollen data, INQUA, working group on data-handling methods. Newsletter 4: 5–7.
  • Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high resolution grids of monthly climatic observations -the CRU TS 3.10. International Journal of Climatology 34(3): 623–642. doi:10.1002/joc.3711.
  • Heim J. 1970. Les relations entre les spectrespolliniquesrécentset la vegetation actuelle en Europe occidentale. Thesis, University of Louvain, Belgium.
  • Hevly RH. 1981. Pollen production, transport and preservation: Potentials and limitations in archaeological palynology. Journal of Ethnobiology 1(1): 39–54.
  • Hicks S. 2001. The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Review of Palaeobotany and Palynology 117(1–3): 1–129. doi:10.1016/S0034-6667(01)00074-4.
  • Kar R, Quamar MF. 2019. Pollen-based Quaternary palaeoclimatic studies in India: an overview of the recent advances. Palynology 43(1): 76–93. doi:10.1080/01916122.2017.1410502.
  • Kar R, Quamar MF. 2020. Late Pleistocene-Holocene vegetation and climate change from the Western and Eastern Himalaya (India): Palynological perspective. Current Science 119(2): 195–218. doi:10.18520/cs/v119/i2/195-218.
  • Kar R, Mishra K, Quamar MF, Mohanty RB, Agarwal S, Tripathi S, Mishra AK. 2022. A high-altitude calibration set of modern biotic proxies from the Western Himalaya, India: pollen–vegetation relation, anthropogenic and palaeoclimatic implications. Catena 211: 106011. https://doi.org/10.1016/j.catena.2021.106011
  • Kato M. 1993. Biogeography of ferns: Dispersal variance. Journal of Biogeography 20: 265–274. doi:10.2307/2845634.
  • Köhler E, Lange E. 1979. A contribution to distinguishing cereal from wild grass pollen grains by LM and SEM. Grana 18(3): 133–140. doi:10.1080/00173137909424973.
  • Köppen W. 1936. Das geographische system der Klimate. In: Köppen W, Geiger R, eds. Handbuch der Klimatologie, 1–44. Berlin: GebrüderBorntraeger.
  • Li YC, Xu QH, Yang XL, Chen H, Lu XH. 2005. Pollen vegetation relationship and pollen preservation on the Northeastern Qinghai-Tibetan Plateau. Grana 44(3): 160–171. doi:10.1080/00173130500230608.
  • Mildenhall DC, Wiltshire PEJ, Bryant VM. 2006. Forensic palynology: Why do it and how it works. Forensic Science International 163(3): 163–172. doi:10.1016/j.forsciint.2006.07.012.
  • Mishra AK, Mohanty RB, Ghosh R, Mishra K, Shukla UK, Kar R. 2022. Modern pollen–vegetation relationships along an altitudinal transect in the Western Higher Himalaya, India: Palaeoclimatic and anthropogenic implications. The Holocene 32(8): 835–852. https://doi.org/10.1177/09596836221096006
  • Moore PD, Webb JA. 1978. An illustrated guide to pollen analysis. London: Hodder and Stoughton.
  • Nayar TS. 1990. Pollen Flora of Maharashtra State, India. New Delhi: Today and Tomorrow’s Printers & Publishers.
  • Pišút P, Bøíízová E, Èejka T, Pipík R. 2010. Paleofloristic and paleofaunistic analysis of Dudváh River oxbow and implication for Late Holocene paleoenvironmental development of the Žitnýostrov Island (SW Slovakia). Geologica Carpathica 61(6): 513–533. doi:10.2478/v10096-010-0032-1.
  • Prentice LC. 1985. Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. doi:10.1016/0033-5894(85)90073-0.
  • Quamar MF. 2015. Non-pollen palynomorphs from the late Quaternary sediments of southwestern Madhya Pradesh (India) and their palaeoenvironmental implications. Historical Biology 27(8): 1070–1078. doi:10.1080/08912963.2014.933212.
  • Quamar MF. 2019. Palynological study of surface soil samples from the Kartala forest range of the Korba District, Chhattisgarh, central India: Modern pollen-rain/vegetation relationships. Geophytology 49(1, 2): 37–48.
  • Quamar MF. 2022a. Holocene vegetation and climate change from central India: An updated and a detailed pollen-based review. In: Kumaran KPN, Padmalal D, eds. Holocene climate change and environment, 129–162. London: Elsevier.
  • Quamar MF. 2022b. Monsoonal climatic reconstruction from central India during the last ca. 3600 cal yr: Signatures of global climatic events, based on lacustrine sediment pollen records. Palynology 46(1): 930605. doi:10.1080/01916122.2021.1930605.
  • Quamar MF. 2022c. Modern pollen-vegetation relationship from the Rourkela (Sundargarh District), Odisha, India: A preliminary study and a comparative account. Palynology 46(3): 2050321. doi:10.1080/01916122.2022.2050321.
  • Quamar MF, Bera SK. 2014a. Surface pollen and its relationship with modern vegetation in tropical deciduous forests of southwestern Madhya Pradesh, India: A review. Palynology 38: 147–161. doi:10.1080/01916122.2013.875491.
  • Quamar MF, Bera SK. 2014b. Pollen production and depositional behavior of teak (Tectona grandis Linn. f.) and sal (Shorea robusta Gaertn. f.): An overview. Quaternary International 325: 111–115. doi:10.1016/j.quaint.2013.07.040.
  • Quamar MF, Bera SK. 2014c. Vegetation and climate change during the mid and late Holocene in northern Chhattisgarh, central India inferred from pollen records. Quaternary International 349: 357–366. doi:10.1016/j.quaint.2014.07.039.
  • Quamar MF, Bera SK. 2015. Modern pollen–vegetation relationships in the tropical mixed deciduous forests of Koriya District in Chhattisgarh, India. Grana 54: 45–52. doi:10.1080/00173134.2014.946443.
  • Quamar MF, Bera SK. 2017a. Pollen records related to vegetation and climate change from northern Chhattisgarh, central India during the late Quaternary. Palynology 41(1): 17–23. doi:10.1080/01916122.2015.1077172.
  • Quamar MF, Bera SK. 2017b. Do the common natural pollen trapping media behave similarly? A comparative study of modern palynoassemblages from Chhattisgarh, central India. Quaternary International 444: 217–226. doi:10.1016/j.quaint.2016.04.041.
  • Quamar MF, Bera SK. 2020. Pollen records of vegetation dynamics, climate change and ISM variability since the LGM from Chhattisgarh State, central India. Review of Palaeobotany and Palynology 278: 104237. doi:10.1016/j.revpalbo.2020.104237.
  • Quamar MF, Chauhan MS. 2010. Modern pollen-rain-vegetation relationship in the tropical deciduous teak (Tectona grandis Linn. f.) forest in southwestern Madhya Pradesh. Geophytology 38(1, 2): 57–64.
  • Quamar MF, Chauhan MS. 2011. Pollen analysis of spider webs from Harda District, Madhya Pradesh. Current Science 101 (12): 1586–1592.
  • Quamar MF, Chauhan MS. 2012. Late Quaternary vegetation, climate as well as lake-level changes and human occupation from Nitaya area in Hoshangabad District, southwestern Madhya Pradesh (India), based on pollen evidence. Quaternary International 263: 104–113.
  • Quamar MF, Chauhan MS. 2014. Signals of Medieval Warm Period and Little Ice Age from southwestern Madhya Pradesh (India): A pollen-inferred Late-Holocene vegetation and climate change. Quaternary International 325: 74–82.
  • Quamar MF, Kar R. 2020a. Prolonged warming over the last ca. 11,700 years from the central Indian core monsoon zone: Pollen evidence and a synoptic overview. Review of Palaeobotany and Palynology 276: 104159. doi:10.1016/j.revpalbo.2020.104159.
  • Quamar MF, Kar R. 2020b. Modern pollen dispersal studies in India: A detailed synthesis and review. Palynology 44(2): 217–236. doi:10.1080/01916122.2018.1557274.
  • Quamar MF, Kar R, Thakur B. 2021. Vegetation response to the Indian Summer Monsoon (ISM) variability during the Late Holocene from the central Indian core monsoon zone. The Holocene 31(7): 1197–1211. doi:10.1177/09596836211003191.
  • Quamar MF, Mir IA, Jaiswal J, Bharti N, Dabhi A, Bhushan R, Prasad N, Javed M. 2023a. Hydro-climatic variability and consequent vegetation response during CE 1219–1942 from the Western Ghats, India. Catena 232: 107448. https://doi.org/10.1016/j.catena.2023.107448
  • Quamar MF, Singh AK, Joshi LM, Kotlia BS, Singh DS, Simion CA, Sava T, Prasad N. 2023b. Vegetation dynamics and hydro-climatic changes during the Middle Holocene from the Central Himalaya, India. Quaternary 6: 11.  https://doi.org/10.3390/quat6010011
  • Quamar MF, Banerji US, Thakur B, Kar R. 2024. Hydroclimatic changes in the Core Monsoon Zone of India since the Last Glacial Maximum: an overview of the palynological data and correlation with the marine and continental records. Palaeogeography, Palaeoclimatology, Palaeoecology 633: 111844. https://doi.org/10.1016/j.palaeo.2023.111844
  • Renault-Miskovsky J. 1972. Contribution à la paléoclimatologie du Midi méditerranéen pendant la Dernière Glaciation et le Post Glaciaired'aprèsl'étudepalynologique de remplissages de grottes et abris sous-roche. Bulletin du Musée d'anthropologie préhistorique de Monaco 17: 145–210.
  • Renault-Miskovsky J. 1985. L'environnementvégétal des sites préhistoriquesalgériens. donnéesactuelles de la paléobotanique. L'Anthropologie 89(3): 307–318.
  • Spieksma F, Cordon JM, Detandt M, Millinngton WM, Nikkels H, Nolard N, Schoemakers CHH, Wachter R, de Weger LA, Willems R, Emberlin J. 2003. Quantitative trends in annual totals of five common airborne pollen type (Betula, Quercus, Pinaceae, Urtica and Artemisia), of five pollen monitoring stations in western Europe. Aerobiologia 19: 171–184. doi:10.1023/B:AERO.0000006528.37447.15.
  • Sugita S. 2007a. Theory of quantitative reconstruction of vegetation I: Pollen from large sites reveals regional vegetation composition. The Holocene 17(2): 229–241. doi:10.1177/0959683607075837.
  • Sugita S. 2007b. Theory of quantitative reconstruction of vegetation II. All you need is love. The Holocene 17(2): 243–257. doi:10.1177/0959683607075838.
  • Tauber H. 1965. Differential pollen dispersal and the interpretation of pollen diagrams. Danmarks Geologiske Undersøgelse (Afhlinger), Række II 89: 1–69.
  • Vincens A, Ssemmanda I, Roux M, Jolly D. 1997. Study of modern pollen-rain in western Uganda with a numerical approach. Review of Palaeobotany and Palynology 96: 145–168. doi:10.1016/S0034-6667(96)00022-X.
  • Webb III T, Howe SE, Bradshaw RHW, Heide KM. 1981. Estimating plant abundances from pollen percentages: The use of regression analysis. Review of Palaeobotany and Palynology 34: 269–300. doi:10.1016/0034-6667(81)90046-4.
  • Wright HE. 1967. The use of surface samples in Quaternary pollen analysis. Review of Palaeobotany and Palynology 2: 321–330. doi:10.1016/0034-6667(67)90162-5.
  • Xu Q, Zhang S, Gaillard MJ, Li M, Cao X, Tian F, Li F. 2016. Studies of modern pollen assemblages for pollen dispersal-deposition-preservation process understanding and for pollen- based reconstructions of past vegetation, climate and human impact: A review based on case studies in China. Quaternary Science Reviews 149: 151–166. doi:10.1016/j.quascirev.2016.07.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.