163
Views
1
CrossRef citations to date
0
Altmetric
Articles

Green synthesis and kinetic study of eco-friendly chelating agent by hydrothermal process for remediation of heavy metals

, , & ORCID Icon

References

  • Aravind Kumar, J., Joshua Amarnath, D., Anuradha Jabasingh, S., Senthil Kumar, P., Vijai Anand, K., Narendrakumar, G., Karthick Raja Namasivayam, S., Krithiga, T., Sunny, S., Purna Pushkala, S. and Yuvarajan, D., “One Pot Green Synthesis of Nano Magnesium Oxide-Carbon Composite: Preparation, Characterization and Application Towards Anthracene Adsorption”, J. Clean. Prod., 237, article 117691 (2019). doi:https://doi.org/10.1016/j.jclepro.2019.117691.
  • Ji, Y., Wen, Y., Wang, Z., Zhang, S. and Guo, M., “Eco-Friendly Fabrication of a Cost-Effective Cellulose Nanofiber-Based Aerogel for Multifunctional Applications in Cu(II) and Organic Pollutants Re”, J. Clean. Prod., 255, pp. 120276 (2020).
  • Li, Q., Fu, L., Wang, Z., Li, A., Shuang, C. and Gao, C., “Synthesis and Characterization of a Novel Magnetic Cation Exchange Resin and Its Application for Efficient Removal of Cu2+ and Ni2+ from Aqueous Solutions”, J. Clean. Prod., 165, pp. 801–810 (2017). doi:https://doi.org/10.1016/j.jclepro.2017.06.150.
  • Dev, V.V., Baburaj, G., Antony, S., Arun, V. and Krishnan, K.A., “Zwitterion-Chitosan Bed for the Simultaneous Immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from Multi-Metal Aqueous Systems”, J. Clean. Prod., 255, pp. 120309 (2020). doi:https://doi.org/10.1016/j.jclepro.2020.120309.
  • Mousavi, H. Z., Hosseinifar, A. and Jahed V., “Removal of Cu (II) from Wastewater by Waste Tire Rubber Ash”, J. Serb. Chem. Soc., 75 (6), pp. 845–853 (2010). doi:https://doi.org/10.2298/JSC090410044M.
  • Mousavi, H.Z. and Hosseinifar, A., Removal of Cu (II) from Wastewater by Waste Tire Rubber Ash. Available Online at Www.Shd.Org.Rs/JSCS/ 2010 Copyright (CC) SCS. 2010, 75 (6), 845–853. doi:https://doi.org/10.2298/JSC090410044M.
  • Zhu, J., Chen, S., Zhu, R., Chen, G.H. and Cao, Y., “Chelating Agent EDDS in Removal of Copper (II) with Three Adsorption Materials”, Adv. Mat. Res., 663, pp. 1005–1010 (2013). doi:https://doi.org/10.4028/www.scientific.net/AMR.663.1005.
  • Kanawade, S.M. and Gaikwad, R.W., “Removal of Zinc Ions from Industrial Effluent by Using Cork Powder as Adsorbent”, Int. J. Chem. Eng., 2, pp. 199–201 (2011). doi:https://doi.org/10.7763/ijcea.2011.v2.102.
  • Mitra, S., Sarkar, A. and Sen, S., “Removal of Chromium from Industrial Effluents Using Nanotechnology: A Review”, Nanotechnol. Environ. Eng., 2, pp. 1–14 (2017). doi:https://doi.org/10.1007/s41204-017-0022-y.
  • Racho, P. and Phalathip, P., “Modified Starch–Enhanced Ultrafiltration for Chromium (VI) Removal”, J. Clean Energy Technol., 2, pp. 18–22 (2014). doi:https://doi.org/10.7763/jocet.2014.v2.83.
  • Liu, Z., Wang, L., Lv, Y., Xu, X., Zhu, C., Liu, F. and Li, A., “Impactful Modulation of Micro-Structures of Acid-Resistant Picolylamine-Based Chelate Resins for Efficient Separation of Heavy Metal Cations from Strongly Acidic Media”, Chem. Eng. J., 420, pp. 129684 (2021). doi:https://doi.org/10.1016/j.cej.2021.129684.
  • Zou, B., Zhang, S., Sun, P., Ye, Z., Zhao, Q., Zhang, W. and Zhou, L., “Preparation of a Novel Poly-Chloromethyl Styrene Chelating Resin Containing Heterofluorenone Pendant Groups for the Removal of Cu (II), Pb (II), and Ni (II) from Wastewaters”, Colloids Interface Sci. Commun, 40, pp. 1–11 (2021). doi:https://doi.org/10.1016/j.colcom.2020.100349.
  • Wu, Q., Cui, Y., Li, Q. and Sun, J., “Effective Removal of Heavy Metals from Industrial Sludge with the aid of a Biodegradable Chelating Ligand GLDA”, J. Hazard. Mater. [Internet], 283, pp. 748–754 (2015). doi:https://doi.org/10.1016/j.jhazmat.2014.10.027.
  • Kołodyńska, D., Siek, M., Gęca, M. and Hubicki, Z., “Role of Chelating Agents of a New Generation in Sorption of Metal Ions”, 41, pp. 107–110 (2010).
  • Sahu, A., Lodaya, B.G., Handu, A.V. and Pandit, A.B., “Expeditious Synthesis and Kinetic Study of Biodegradable Amide 2,2-((3-(2-((Carboxymethyl)Amino)-2-Oxoethyl)-3-Hydroxypentanedioyl)bis(Azanediyl) Diacetic Acid (COHBDA) Under Ultrasound Irradiation”, Indian Chem. Eng., 0, pp. 1–15 (2020). doi:https://doi.org/10.1080/00194506.2020.1720530.
  • Shaikh, K.A., Chaudhar, U.N. and Ningdale, V.B., “Citric Acid Catalyzed Synthesis of Amidoalkyl Naphthols Under Solvent-Free Condition: An Eco-Friendly Protocol”, IOSR J. Appl. Chem, 7, pp. 90–93 (2014). doi:https://doi.org/10.9790/5736-07429093.
  • Sahu, A., Badhe, P.S., Adivarekar, R., Ladole, M.R. and Pandit, A.B., “Synthesis of Glycinamides Using Protease Immobilized Magnetic Nanoparticles”, Biotechnology Reports, 12, pp. 13–25 (2016). doi:https://doi.org/10.1016/j.btre.2016.07.002.
  • Bortolami, M., Pandolfi, F., Messore, A., Rocco, D., Feroci, M., Di Santo, R., De Vita, D., Costi, R., Cascarino, P., Simonetti, G. and Scipione, L., “Design, Synthesis and Biological Evaluation of a Series of Iron and Copper Chelating Deferiprone Derivatives as new Agents Active Against Candida Albicans”, Bioorg. Med. Chem. Lett., 42, pp. 1–7 (2021). doi:https://doi.org/10.1016/j.bmcl.2021.128087.
  • Aniya, V.K., Muktham, R.K., Alka, K. and Satyavathi, B., “Modeling and Simulation of Batch Kinetics of non-Edible Karanja oil for Biodiesel Production : A Mass Transfer Study”, FUEL [Internet, 161, pp. 137–145 (2015). doi:https://doi.org/10.1016/j.fuel.2015.08.042.
  • Dine, T.M.E., Erb, W., Berhault, Y., Rouden, J. and Blanchet, J., “Catalytic Chemical Amide Synthesis at Room Temperature: One More Step Toward Peptide Synthesis”, J. Org. Chem., 80, pp. 4532–4544 (2015). doi:https://doi.org/10.1021/acs.joc.5b00378.
  • Singh P., Singh A., Kaur S., Mithu V.S. and Bhatti M.S., “RSC Advances Temperature, pH and H-Bond Synergism for Speci fi c Tetra- and Penta-Peptides Without Using”, RSC Advances [Internet], 4, pp. 37371–37374 (2014). doi:https://doi.org/10.1039/C4RA06187J.
  • Sahu, A. and Pandit, A.B., “Kinetic Study of Homogeneous Catalyzed Esterification of a Series of Aliphatic Acids with Different Alcohols”, Ind. Eng. Chem. Res., 58, pp. 2672–2682 (2019). doi:https://doi.org/10.1021/acs.iecr.8b04781.
  • Cheshmedzhieva, D., Ilieva, S., Hadjieva, B. and Galabov, B., “The mechanism of alkaline hydrolysis of amides : a comparative computational and experimental study of the hydrolysis of N-–methylacetamide, N-methylbenzamide, and acetanilide”, 22, pp. 619–631 (2009).
  • Sahu, A. and Pandit, A.B., “Facile Synthesis of Homogeneous Catalyzed Esterification of Medium-Chain-Length Fatty Acids an Kinetic Study”, Ind. Eng. Chem. Res., 58, pp. 22212–22224 (2019). doi:https://doi.org/10.1021/acs.iecr.9b05034.
  • Sheldon, R.A., “Metrics of Green Chemistry and Sustainability: Past, Present, and Future”. ACS Sustain. Chem. Eng, 6, pp. 32–48 (2018). doi:https://doi.org/10.1021/acssuschemeng.7b03505.
  • Jad, Y.E., Kumar, A., El-Faham, A., de la Torre, B.G. and Albericio, F., “Green Transformation of Solid-Phase Peptide Synthesis”, ACS Sustain. Chem. Eng, 7, pp. 3671–3683 (2019). doi:https://doi.org/10.1021/acssuschemeng.8b06520.
  • Di, P.L., Mancini, D. and Petrucci, E., “Experimental Assessment of Chromium Mobilization from Polluted Soil by Washing”, 28, pp. 145–150 (2012).
  • Rengaraj, S., Yeon, K. and Moon, S., “Removal of Chromium from Water and Wastewater by ion Exchange Resins”, 87, pp. 273–287 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.