84
Views
0
CrossRef citations to date
0
Altmetric
ACMS-2022 Articles

MgAl2O4 with CaO in supported Ni and Ni–Co catalysts – impact on CO2 reforming of CH4

&
Pages 574-586 | Received 06 Apr 2022, Accepted 29 Jun 2023, Published online: 31 Aug 2023

References

  • Fan MS, Abdullah AZ, Bhatia S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas. ChemCatChem. 2009;1:192–208. doi:10.1002/cctc.200900025
  • Usman M, Wan Daud WMA, Abbas HF. Dry reforming of methane: influence of process parameters – a review. Renew Sustain Energy Rev. 2015;45:710–744. doi:10.1016/j.rser.2015.02.026
  • Bradford MCJ, Vannice MA. The role of metal-support interactions in CO2 reforming of CH4. Catal Today. 1999;50:87–96. doi:10.1016/S0920-5861(98)00465-9
  • Fan MS, Abdullah AZ, Bhatia S. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies. ChemSusChem. 2011;4:1643–1653. doi:10.1002/cssc.201100113
  • Roslan NA, Abidin SZ, Ideris A, et al. A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions. Int J Hydrogen Energy. 2020;45:18466–18489. doi:10.1016/j.ijhydene.2019.08.211
  • Kumari R, Sengupta S. Catalytic CO2 reforming of CH4 over MgAl2O4 supported Ni–Co catalysts for the syngas production. Int J Hydrogen Energy. 2020;45:22775–22787. doi:10.1016/j.ijhydene.2020.06.150
  • Dang C, Luo J, Yang W, et al. Low-temperature catalytic dry reforming of methane over Pd promoted Ni–CaO–Ca12Al14O33 multifunctional catalyst. Ind Eng Chem Res. 2021;60:18361–18372. doi:10.1021/acs.iecr.1c04010
  • Wang S, (Max) Lu GQ. Reaction kinetics and deactivation of Ni-based catalysts in CO2 reforming of methane. React Eng Pollut Prev. 2000: 75–84. doi:10.1016/B978-044450215-5/50080-9
  • Alipour Z, Rezaei M, Meshkani F. Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane. Fuel [Internet]. 2014;129:197–203. doi:10.1016/j.fuel.2014.03.045
  • Zhang ZL, Verykios XE. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal Today. 1994;21:589–595. doi:10.1016/0920-5861(94)80183-5
  • Akbari E, Alavi SM, Rezaei M. Synthesis gas production over highly active and stable nanostructured Ni[sbnd]MgO[sbnd]Al2O3 catalysts in dry reforming of methane: effects of Ni contents. Fuel [Internet]. 2017;194:171–179. doi:10.1016/j.fuel.2017.01.018
  • Bouarab R, Akdim O, Auroux A, et al. Effect of MgO additive on catalytic properties of Co/SiO2 in the dry reforming of methane. Appl Catal A Gen. 2004;264:161–168. doi:10.1016/j.apcata.2003.12.039
  • Mirzaei F, Rezaei M, Meshkani F, et al. Carbon dioxide reforming of methane for syngas production over Co–MgO mixed oxide nanocatalysts. J Ind Eng Chem [Internet]. 2015;21:662–667. doi:10.1016/j.jiec.2014.03.034
  • Quincoces CE, Dicundo S, Alvarez AM, et al. Effect of addition of CaO on Ni/Al2O3 catalysts over CO2 reforming of methane. Mater Lett. 2001;50:21–27. doi:10.1016/S0167-577X(00)00406-7
  • Taherian Z, Gharahshiran VS, Fazlikhani F, et al. Catalytic performance of Samarium-modified Ni catalysts over Al2O3–CaO support for dry reforming of methane. Int J Hydrogen Energy. 2021;46:7254–7262. doi:10.1016/j.ijhydene.2020.11.196
  • Hu J, Hongmanorom P, Galvita V V, et al. Bifunctional Ni–Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming. Appl Catal B Environ [Internet]. 2021;284:119734, doi:10.1016/j.apcatb.2020.119734
  • Sun H, Zhang Q, Wen J, et al. Insight into the role of CaO in coke-resistant over Ni-HMS catalysts for CO2 reforming of methane. Appl Surf Sci. 2020;521:146395. doi:10.1016/j.apsusc.2020.146395
  • Sengupta S, Ray K, Deo G. Effects of modifying Ni/Al2O3 catalyst with cobalt on the reforming of CH4 with CO2 and cracking of CH4 reactions. Int J Hydrogen Energy [Internet]. 2014;39:11462–11472. doi:10.1016/j.ijhydene.2014.05.058
  • Bao A, Liew K, Li J. Fischer–Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts. J Mol Catal A Chem. 2009;304:47–51. doi:10.1016/j.molcata.2009.01.022
  • Bellido JDA, De Souza JE, M’Peko JC, et al. Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Appl Catal A Gen. 2009;358:215–223. doi:10.1016/j.apcata.2009.02.014
  • Sengupta S, Deo G. Modifying alumina with CaO or MgO in supported Ni and Ni–Co catalysts and its effect on dry reforming of CH4. J CO2. Util. 2015;10:67–77. doi:10.1016/j.jcou.2015.04.003
  • Katheria S, Gupta A, Deo G, et al. Sciencedirect effect of calcination temperature on stability and activity of Ni/MgAl2O4 catalyst for steam reforming of methane at high pressure condition. Int J Hydrogen Energy [Internet]. 2016;41:14123–14132. doi:10.1016/j.ijhydene.2016.05.109
  • Raikwar D, Majumdar S, Shee D. Synergistic effect of Ni–Co alloying on hydrodeoxygenation of guaiacol over Ni–Co/Al2O3 catalysts. Mol Catal [Internet]. 2021;499:111290, doi:10.1016/j.mcat.2020.111290
  • Li L, Anjum DH, Zhu H, et al. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane. ChemCatChem. 2015;7:427–433. doi:10.1002/cctc.201402921
  • Yang W, Feng Y, Chu W. Promotion effect of CaO modification on mesoporous Al2O3-supported Ni catalysts for CO2 methanation. Int J Chem Eng. 2016;1–7. doi:10.1155/2016/2041821
  • Jang WJ, Shim JO, Kim HM, et al. A review on dry reforming of methane in aspect of catalytic properties. Catal Today. 2019;324:15–26. doi:10.1016/j.cattod.2018.07.032
  • Yu J, Ge Q, Fang W, et al. Influences of calcination temperature on the efficiency of CaO promotion over CaO modified Pt/γ-Al2O3 catalyst. Appl Catal A Gen [Internet]. 2011;395:114–119. doi:10.1016/j.apcata.2011.01.031
  • Dias JAC, Assaf JM. Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane. Catal Today. 2003;85:59–68. doi:10.1016/S0920-5861(03)00194-9
  • Estephane J, Aouad S, Hany S, et al. CO2 reforming of methane over Ni- Co/ZSM5 catalysts. Aging and Carbon Deposition Study. 2015;40:9201–9208. doi:10.1016/j.ijhydene.2015.05.147
  • Fan MS, Abdullah AZ, Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: preparation,: characterization and activity studies. Appl Catal B Environ [Internet]. 2010;100:365–377. doi:10.1016/j.apcatb.2010.08.013
  • Guo J, Lou H, Zheng X. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon N Y. 2007;45:1314–1321. doi:10.1016/j.carbon.2007.01.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.