43
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimisation and evaluation of reactive eriochrome black T dye removal on magnetic iron modified with sky fruit from an aqueous solution

, , , &
Pages 117-140 | Received 16 May 2023, Accepted 30 Oct 2023, Published online: 29 Nov 2023

References

  • Haseena M, Malik MF, Javed A, et al. Water pollution and human health. Environ Risk Assess Remed. 2017;1(3):16–19.
  • Barka N, Abdennouri M, Makhfouk MEL. Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on scolymus hispanicus L.: kinetics, equilibrium and thermodynamics. J Taiwan Inst Chem Eng. 2011;42(2):320–326. doi:10.1016/j.jtice.2010.07.004
  • Feng Y, Yang F, Wang Y, et al. Basic dye adsorption onto an agro-based waste material – sesame hull (Sesamum indicum L.). Bioresour Technol. 2011;102(22):10280–10285. doi:10.1016/j.biortech.2011.08.090
  • Parthasarathy P, Narayanan SK. Effect of hydrothermal carbonization reaction parameters on. Environ Prog Sustain Energy. 2014;33(3):676–680. doi:10.1002/ep
  • Ahmad N, Nordin NAHM, Jaafar J, et al. Significant improvement in antibacterial property of ZIF-8 decorated graphene oxide by post-synthetic modification process. J Environ Chem Eng. 2021;9(5):105887, doi:10.1016/j.jece.2021.105887
  • Mahmoodi NM, Mokhtari-Shourijeh Z. Preparation of aminated nanoporous nanofiber by solvent casting/porogen leaching technique and dye adsorption modeling. J Taiwan Inst Chem Eng. 2016;65:378–389. doi:10.1016/j.jtice.2016.05.042
  • Mahmoodi NM, Saffar-Dastgerdi MH, Hayati B. Environmentally friendly novel covalently immobilized enzyme bionanocomposite: from synthesis to the destruction of pollutant. Compos B: Eng. 2020;184:107666. doi:10.1016/j.compositesb.2019.107666
  • Rimzim, Singh J, Mittal S, et al. Robust removal of cationic dyes by zinc ferrite composites in single and ternary dye systems. Inorg Chem Commun. 2023;153(February):110756. doi:10.1016/j.inoche.2023.110756
  • Sen TK, Afroze S, Ang HM. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of pinus radiata. Water, Air, Soil Pollut. 2011;218(1–4):499–515. doi:10.1007/s11270-010-0663-y
  • Mohammadi N, Khani H, Gupta VK, et al. Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J Colloid Interface Sci. 2011;362(2):457–462. doi:10.1016/j.jcis.2011.06.067
  • Sahoo JK, Konar M, Rath J, et al. Magnetic hydroxyapatite nanocomposite: impact on eriochrome black-T removal and antibacterial activity. J Mol Liq. 2019;294:111596. doi:10.1016/j.molliq.2019.111596
  • John A, Yang HH, Muhammad S, et al. Cross talk between synthetic food colors (azo dyes), oral flora, and cardiovascular disorders. Appl Sci (Switz). 2022;12(14):7084. doi:10.3390/app12147084
  • Zargar B, Parham H, Rezazade M. Fast removal and recovery of methylene blue by activated carbon modified with magnetic iron oxide nanoparticles. J Chin Chem Soc. 2011;58(5):694–699. doi:10.1002/jccs.201190108
  • Wang LF, Duan JC, Miao WH, et al. Adsorption-desorption properties and characterization of crosslinked konjac glucomannan-graft-polyacrylamide-co-sodium xanthate. J Hazard Mater. 2011;186(2–3):1681–1686. doi:10.1016/j.jhazmat.2010.12.055
  • Zhai QG, Jahn BM, Zhang RY, et al. Triassic subduction of the paleo-tethys in northern Tibet, China: evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the qiangtang block. J Asian Earth Sci. 2011;42(6):1356–1370. doi:10.1016/j.jseaes.2011.07.023
  • Alventosa-deLara E, Barredo-Damas S, Alcaina-Miranda MI, et al. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. J Hazard Mater. 2012;209-210:492–500. doi:10.1016/j.jhazmat.2012.01.065
  • El-Ashtoukhy ESZ, Amin NK, Abd El-Latif MM, et al. New insights into the anodic oxidation and electrocoagulation using a self-gas stirred reactor: a comparative study for synthetic C.I reactive violet 2 wastewater. J Cleaner Prod. 2017;167:432–446. doi:10.1016/j.jclepro.2017.08.174
  • Ighalo JO, Adeniyi AG. Adsorption of pollutants by plant bark derived adsorbents: an empirical review. J Water Process Eng. 2020;35(March):101228. doi:10.1016/j.jwpe.2020.101228
  • Ghaedi M, Calle EA, Mendez JJ, et al. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest. 2013;123(11):4950–4962. doi:10.1172/JCI68793
  • Chakraborty S, De S, DasGupta S, et al. Adsorption study for the removal of a basic dye: experimental and modeling. Chemosphere. 2005;58(8):1079–1086. doi:10.1016/j.chemosphere.2004.09.066
  • Chen Y, Zhu Y, Wang Z, et al. Application studies of activated carbon derived from rice husks produced by chemical-thermal process—a review. Adv Colloid Interface Sci. 2011;163(1):39–52. doi:10.1016/j.cis.2011.01.006
  • Ahmed MJ, Dhedan SK. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib. 2012;317:9–14. doi:10.1016/j.fluid.2011.12.026
  • Tan IAW, Ahmad AL, Hameed BH. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2008;154(1–3):337–346. doi:10.1016/j.jhazmat.2007.10.031
  • Ozer C, Imamoglu M, Turhan Y, et al. Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks. Toxicol Environ Chem. 2012;94(7):1283–1293. doi:10.1080/02772248.2012.707656
  • Imamoglu M. Adsorption of Cd(II) ions onto activated carbon prepared from hazelnut husks. J Dispersion Sci Technol. 2013;34(9):1183–1187. doi:10.1080/01932691.2012.739869
  • Li W, Zhang Lb, Peng Jh, et al. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind Crops Prod. 2008;27(3):341–347. doi:10.1016/j.indcrop.2007.11.011
  • Kannan N, Sundaram MM. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigm. 2001;51(1):25–40. doi:10.1016/S0143-7208(01)00056-0
  • Sudaryanto Y, Hartono SB, Irawaty W, et al. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour Technol. 2006;97(5):734–739. doi:10.1016/j.biortech.2005.04.029
  • Teka T, Enyew S. Study on effect of different parameters on adsorption efficiency of low cost activated orange peels for the removal of methylene blue dye. Int J Innov Sci Res. 2014;8(1):106–111.
  • Toumi KH, Bergaoui M, Khalfaoui M, et al. Computational study of acid blue 80 dye adsorption on low cost agricultural Algerian olive cake waste: statistical mechanics and molecular dynamic simulations. J Mol Liq. 2018;271:40–50. doi:10.1016/j.molliq.2018.08.115
  • Kyzas GZ, Lazaridis NK, Mitropoulos AC. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach. Chem Eng J. 2012;189-190:148–159. doi:10.1016/j.cej.2012.02.045
  • Zhu GZ, Deng XL, Hou M, et al. Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues. Fuel Process Technol. 2016;144:255–261. doi:10.1016/j.fuproc.2016.01.007
  • Farahani M, Abdullah SRS, Hosseini S, et al. Adsorption-based cationic dyes using the carbon active sugarcane bagasse. Proc Environ Sci. 2011;10(PART A):203–208. doi:10.1016/j.proenv.2011.09.035
  • Namasivayam C, Sangeetha D. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. J Hazard Mater. 2006;135(1–3):449–452. doi:10.1016/j.jhazmat.2005.11.066
  • Miada Z, Karima B, Mossaab BL. Adsorption of eriochrome black T (EBT) dye using activated carbon prepared from potato peels. Journal des Doctoriales. 2015;1:10–13.
  • Rossi LM, Costa NJS, Silva FP, et al. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 2014;16(6):2906–2933. doi:10.1039/c4gc00164h
  • Tang SCN, Lo IMC. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 2013;47(8):2613–2632. doi:10.1016/j.watres.2013.02.039
  • Zhang Hw, Liu Y, Sun Sh. Synthesis and assembly of magnetic nanoparticles for information and energy storage applications. Front Phys China. 2010;5(4):347–356. doi:10.1007/s11467-010-0104-9
  • Laurent S, Dutz S, Häfeli UO, et al. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1–2):8–23. doi:10.1016/j.cis.2011.04.003
  • Li XB, Gao YJ, Wang Y, et al. Self-assembled framework enhances electronic communication of ultrasmall-sized nanoparticles for exceptional solar hydrogen evolution. J Am Chem Soc. 2017;139(13):4789–4796. doi:10.1021/jacs.6b12976
  • Reddy LH, Arias JL, Nicolas J, et al. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818–5878. doi:10.1021/cr300068p
  • Gul S, Khan SB, Rehman IU, et al. A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater. 2019;6(July):1–15. doi:10.3389/fmats.2019.00179
  • Blanco-Andujar C, Walter A, Cotin G, et al. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine. 2016;11(14):1889–1910. doi:10.2217/nnm-2016-5001
  • Bae KH, Park M, Do MJ, et al. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano. 2012;6(6):5266–5273. doi:10.1021/nn301046w
  • Grüttner C, Müller K, Teller J, et al. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperthermia. 2013;29(8):777–789. doi:10.3109/02656736.2013.835876
  • Estelrich J, Escribano E, Queralt J, et al. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci. 2015;16(4):8070–8101. doi:10.3390/ijms16048070
  • Ding Y, Shen SZ, Sun H, et al. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C. 2015;48:487–498. doi:10.1016/j.msec.2014.12.036
  • Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed. 2012;7:3445–3471. doi:10.2147/IJN.S30320
  • Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–10689. doi:10.1021/acs.chemrev.5b00112
  • Fatima H, Kim KS. Magnetic nanoparticles for bioseparation. Korean J Chem Eng. 2017;34(3):589–599. doi:10.1007/s11814-016-0349-2
  • Zhang G, Qie F, Hou J, et al. One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation. J Mater Res. 2012;27(7):1006–1013. doi:10.1557/jmr.2012.35
  • Baghayeri M, Nazarzadeh Zare E, Mansour Lakouraj M. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron. 2014;55:259–265. doi:10.1016/j.bios.2013.12.033
  • Martín M, Salazar P, Villalonga R, et al. Preparation of core–shell Fe3O4 @poly(dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B. 2014;2(6):739–746. doi:10.1039/C3TB21171A
  • Shi X, Gu W, Li B, et al. Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta. 2014;181(1–2):1–22. doi:10.1007/s00604-013-1069-5
  • Peterson RD, Chen W, Cunningham BT, et al. Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosens Bioelectron. 2015;74:815–822. doi:10.1016/j.bios.2015.07.050
  • Yang M, Guan Y, Yang Y, et al. A sensitive and rapid immunoassay for mycoplasma pneumonia based on Fe3O4 nanoparticles. Mater Lett. 2014;137:113–116. doi:10.1016/j.matlet.2014.08.135
  • Cao M, Li Z, Wang J, et al. Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol. 2012;27(1):47–56. doi:10.1016/j.tifs.2012.04.003
  • Jiang S, Eltoukhy AA, Love KT, et al. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett. 2013;13(3):1059–1064. doi:10.1021/nl304287a
  • Li L, Jiang W, Luo K, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 2013;3(8):595–615. doi:10.7150/thno.5366
  • Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK, et al. Plant-mediated synthesis and applications of iron nanoparticles. Mol Biotechnol. 2018;60(2):154–168. doi:10.1007/s12033-017-0053-4
  • Kumar M, Dosanjh HS, Singh H. Surface modification of spinel ferrite with biopolymer for adsorption of cationic and anionic dyes in single and ternary dye system. Fibers Polym. 2019;20(4):739–751. doi:10.1007/s12221-019-8462-6
  • Hosseini SA, Vossoughi M, Mahmoodi NM, et al. Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. J Cleaner Prod. 2018;183:1197–1206. doi:10.1016/j.jclepro.2018.02.168
  • Yardimci AI, Kayhan M, Durmus A, et al. Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Res Eng Struct Mater. 2022;8(2):223–231. doi:10.17515/resm2022.357na1027
  • Rahimi Aqdam S, Otzen DE, Mahmoodi NM, et al. Adsorption of azo dyes by a novel bio-nanocomposite based on whey protein nanofibrils and nano-clay: equilibrium isotherm and kinetic modeling. J Colloid Interface Sci. 2021;602:490–503. doi:10.1016/j.jcis.2021.05.174
  • Kumar M, Dosanjh HS, Singh H. Magnetic zinc ferrite–chitosan bio-composite: synthesis, characterization and adsorption behavior studies for cationic dyes in single and binary systems. J Inorg Organomet Polym Mater. 2018;28(3):880–898. doi:10.1007/s10904-017-0752-0
  • Mahmoodi NM, Keshavarzi S, Ghezelbash M. Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater. J Environ Chem Eng. 2017;5(4):3684–3689. doi:10.1016/j.jece.2017.07.010
  • Mahmoodi NM, Karimi B, Mazarji M, et al. Cadmium selenide quantum dot-zinc oxide composite: synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. J Photochem Photobiol, B. 2018;188:19–27. doi:10.1016/j.jphotobiol.2018.08.023
  • Mokhtari-Shourijeh Z, Langari S, Montazerghaem L, et al. Synthesis of porous aminated PAN/PVDF composite nanofibers by electrospinning: characterization and direct red 23 removal. J Environ Chem Eng. 2020;8(4):103876. doi:10.1016/j.jece.2020.103876
  • Mahmoodi NM, Maghsoodi A. Kinetics and isotherm of cationic dye removal from multicomponent system using the synthesized silica nanoparticle. Desalin Water Treat. 2015;54(2):562–571. doi:10.1080/19443994.2014.880158
  • Hosseinabadi-Farahani Z, Mahmoodi NM, Hosseini-Monfared H. Preparation of surface functionalized graphene oxide nanosheet and its multicomponent dye removal ability from wastewater. Fibers Polym. 2015;16(5):1035–1047. doi:10.1007/s12221-015-1035-4
  • Hosseinabadi-Farahani Z, Hosseini-Monfared H, Mahmoodi NM. Graphene oxide nanosheet: preparation and dye removal from binary system colored wastewater. Desalin Water Treat. 2015;56(9):2382–2394. doi:10.1080/19443994.2014.960462
  • Djilani C, Zaghdoudi R, Djazi F, et al. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem Eng. 2015;53:112–121. doi:10.1016/j.jtice.2015.02.025
  • Ahmad M, Megat K, Saime W, et al. (2012). je sc sc (2).
  • Chung HK, Kim WH, Park J, et al. Application of langmuir and freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J Ind Eng Chem. 2015;28:241–246. doi:10.1016/j.jiec.2015.02.021
  • Allen SJ, Mckay G, Porter JF. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci. 2004;280(2):322–333. doi:10.1016/j.jcis.2004.08.078
  • Wasewar KL, Atif M, Prasad B, et al. Adsorption of zinc using tea factory waste: kinetics, equilibrium and thermodynamics. Clean – Soil Air Water. 2008;36(3):320–329. doi:10.1002/clen.200700139
  • Hu Q, Zhang Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J Mol Liq. 2019;277:646–648. doi:10.1016/j.molliq.2019.01.005
  • Sharma S, Hasan A, Kumar N, et al. Removal of methylene blue dye from aqueous solution using immobilized agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environ Sci Pollut Res. 2018;25(22):21605–21615. doi:10.1007/s11356-018-2280-z
  • Agrafioti E, Kalderis D, Diamadopoulos E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag. 2014;133:309–314. doi:10.1016/j.jenvman.2013.12.007
  • Salt C, Marg GB. Ultrasound-assisted adsorption of reactive blue 21 dye on TiO2 in the presence of some rare earths (La, Ce, Pr & Gd). Can J Chem Eng. 2014;92:41–51. doi:10.1002/cjce.21799
  • Hami HK, Abbas RF, Waheb AA, et al. Removal of eriochrom black T from aqueous solution using Al2O3 surface: linear and non-linear isotherm models, error analysis and thermodynamic studies. Mater Today Proc. 2020;20(Part 4):599–604. doi:10.1016/j.matpr.2019.09.196
  • Sriram G, Uthappa UT, Rego RM, et al. Ceria decorated porous diatom-xerogel as an effective adsorbent for the efficient removal of eriochrome black T. Chemosphere. 2020;238:124692 doi:10.1016/j.chemosphere.2019.124692
  • Kaur Y, Jasrotia T, Kumar R, et al. Adsorptive removal of eriochrome black T (EBT) dye by using surface active low cost zinc oxide nanoparticles: a comparative overview. Chemosphere. 2021;278:130366. doi:10.1016/j.chemosphere.2021.130366
  • Manzar MS, Zubair M, Khan NA, et al. Adsorption behaviour of green coffee residues for decolourization of hazardous Congo red and eriochrome black T dyes from aqueous solutions. Int J Environ Anal Chem. 2022;102(00):6405–6421. doi:10.1080/03067319.2020.1811260
  • Salimi F, Valiei V, Karami C. Removal of EBT dye from aqueous solution by modified MoNiO4 adsorbent. Desalin Water Treat. 2020;190:340–352. doi:10.5004/dwt.2020.25697
  • Fegade U, Jethave G, Hong WG, et al. Multifunctional Zn0.3Al0.4O4.5 crystals: an efficient photocatalyst for formaldehyde degradation and EBT adsorption. Arab J Chem. 2020;13(11):8262–8270. doi:10.1016/j.arabjc.2020.04.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.