481
Views
16
CrossRef citations to date
0
Altmetric
Articles

Application of 55 multi-dimensional tectonomagmatic discrimination diagrams to Precambrian belts

, &
Pages 1365-1388 | Received 14 Feb 2014, Accepted 01 May 2014, Published online: 16 Jun 2014

References

  • Agrawal, S., Guevara, M., and Verma, S.P., 2004, Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks: International Geology Review, v. 46, p. 575–594. doi:10.2747/0020-6814.46.7.575
  • Agrawal, S., Guevara, M., and Verma, S.P., 2008, Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements: International Geology Review, v. 50, p. 1057–1079. doi:10.2747/0020-6814.50.12.1057
  • Agrawal, S., and Verma, S.P., 2007, Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006): Geochimica Et Cosmochimica Acta, v. 71, p. 3388–3390. doi:10.1016/j.gca.2007.03.036
  • Ahmad, T., and Tarney, J., 1994, Geochemistry and petrogenesis of late Archaean Aravalli volcanics, basement enclaves and granitoids, Rajasthan: Precambrian Research, v. 65, p. 1–23. doi:10.1016/0301-9268(94)90097-3
  • Aitchison, J., 1986, The statistical analysis of compositional data: London, New York, Chapman and Hall.
  • Armstrong-Altrin, J.S., and Verma, S.P., 2005, Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings: Sedimentary Geology, v. 177, p. 115–129. doi:10.1016/j.sedgeo.2005.02.004
  • Bach, W., Hegner, E., Erzinger, J., and Satir, M., 1994, Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30° S: Contributions to Mineralogy and Petrology, v. 116, p. 365–380. doi:10.1007/BF00310905
  • Bailie, R., Rajesh, H.M., and Gutzmer, J., 2012, Bimodal volcanism at the western margin of the Kaapvaal Craton in the aftermath of collisional events during the Namaqua-Natal Orogeny: The Koras Group, South Africa: Precambrian Research, v. 200–203, p. 163–183. doi:10.1016/j.precamres.2012.01.017
  • Bhatia, M.R., and Crook, A.W., 1986, Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins: Contributions to Mineralogy and Petrology, v. 92, p. 181–193. doi:10.1007/BF00375292
  • Brown, G.C., Thorpe, R.S., and Webb, P.C., 1984, The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources: Journal of the Geological Society of London, v. 141, p. 413–426. doi:10.1144/gsjgs.141.3.0413
  • Bryan, W.B., Thompson, G., and Ludden, J.N., 1981, Compositional variation in normal MORB from 22°–25°N: Mid-Atlantic ridge and Kane fracture zone: Journal of Geophysical Research, v. 86, p. 11815–11836. doi:10.1029/JB086iB12p11815
  • Buccianti, A., 2013, Is compositional data analysis a way to see beyond the illusion?: Computers & Geosciences, v. 50, p. 165–173. doi:10.1016/j.cageo.2012.06.012
  • Cabanis, B., and Lecolle, M., 1989, Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale: Compte Rendu Academy Sciences Paris, v. 309, p. 2023–2029.
  • Chaudhri, N., Kaur, P., Okrusch, M., and Schimrosczyk, A., 2003, Characterisation of the Dabla granitoids, North Khetri copper belt, Rajasthan, India: Evidence of bimodal anorogenic felsic magmatism: Gondwana Research, v. 6, p. 879–895. doi:10.1016/S1342-937X(05)71032-7
  • Culshaw, N.G., Slagstad, T., Raistrick, M., and Dostal, J., 2013, Geochemical, geochronological and isotopic constraints on the origin of members of the allochthonous Shawanaga and basal Parry Sound domains, Central Gneiss Belt, Grenville Province, Ontario: Precambrian Research, v. 228, p. 131–150. doi:10.1016/j.precamres.2013.01.012
  • Debaille, V., Blichert-Toft, J., Agranier, A., Doucelance, R., Schiano, P., and Albarede, F., 2006, Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35°N: Earth and Planetary Science Letters, v. 241, p. 844–862. doi:10.1016/j.epsl.2005.11.004
  • Dosso, L., Bougault, H., Beuzart, P., Calvez, J.-Y., and Joron, J.-L., 1988, The geochemical structure of the South-East Indian Ridge: Earth and Planetary Science Letters, v. 88, p. 47–59. doi:10.1016/0012-821X(88)90045-3
  • Dosso, L., Bougault, H., and Joron, J.-L., 1993, Geochemical morphology of the north Mid-Atlantic Ridge, 10°–24°N: Trace element-isotope complementarity: Earth and Planetary Science Letters, v. 120, p. 443–462. doi:10.1016/0012-821X(93)90256-9
  • Duraiswami, R.A., Inamdar, M.M., and Shaikh, T.N., 2013, Emplacement of pillow lavas from the ~2.8 Ga Chitradurga greenstone belt, South India: A physical volcanological, morphometric and geochemical perspective: Journal of Volcanology and Geothermal Research, v. 264, p. 134–149. doi:10.1016/j.jvolgeores.2013.08.002
  • Eby, G.N., 1992, Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications: Geology, v. 20, p. 641–644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  • Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal, C., 2003, Isometric logratio transformations for compositional data analysis: Mathematical Geology, v. 35, p. 279–300. doi:10.1023/A:1023818214614
  • Fitton, J.G., and Godard, M., 2004, Origin and evolution of magmas on the Ontong Java Plateau: Geological Society, London, Special Publications, v. 229, p. 151–178. doi:10.1144/GSL.SP.2004.229.01.10
  • Guo, R., Liu, S., Santosh, M., Li, Q., Bai, X., and Wang, W., 2013, Geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton: Gondwana Research, v. 24, p. 664–686. doi:10.1016/j.gr.2012.12.025
  • Haase, K.M., Devey, C.W., and Wieneke, M., 2003, Magmatic processes and mantle heterogeneity beneath the slow-spreading northern Kolbeinsey Ridge segment, North Atlantic: Contributions to Mineralogy and Petrology, v. 144, p. 428–448. doi:10.1007/s00410-002-0408-z
  • Harpp, K.S., Fornari, D.J., Geist, D.J., and Kurz, M.D., 2003, Genovesa submarine ridge: A manifestation of plume-ridge interaction in the northern Galápagos Islands: Geochemistry Geophysics Geosystems, v. 4, p. 8511. doi:10.1029/2003GC000531
  • Harris, N.B.W., Pearce, J.A., and Tindle, A.G., 1986, Geochemical characterization of collision zone magmatism, in Coward, A.C., and Reiss, A.C., eds., Collision tectonics: Special Publication of Geological Society of London, p. 67–81.
  • Hoernle, K., Hauff, F., van den Bogaard, P., Werner, R., Mortimer, N., Geldmacher, J., Garbe-Schönberg, D., and Davy, B., 2010, Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki Oceanic Plateaus: Geochimica Et Cosmochimica Acta, v. 74, p. 7196–7219. doi:10.1016/j.gca.2010.09.030
  • Hollings, P., and Ansdell, K., 2002, Paleoproterozoic arc magmatism imposed on an older backarc basin: Implications for the tectonic evolution of the Trans-Hudson orogen, Canada: Geological Society of America Bulletin, v. 114, p. 153–168. doi:10.1130/0016-7606(2002)114<0153:PAMIOA>2.0.CO;2
  • Jarrar, G.H., Manton, W.I., Stern, R.J., and Zachmann, D., 2008, Late Neoproterozoic A-type granites in the northernmost Arabian-Nubian shield formed by fractionation of basaltic melts: Chemie Der Erde – Geochemistry, v. 68, p. 295–312. doi:10.1016/j.chemer.2006.09.002
  • Kampunzu, A.B., Tembo, F., Matheis, G., Kapenda, D., and Huntsman-Mapila, P., 2000, Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan basin, Central Africa: Implications for Rodinia break-up: Gondwana Research, v. 3, p. 125–153. doi:10.1016/S1342-937X(05)70093-9
  • Kaur, P., Chaudhri, N., Okrusch, M., and Koepke, J., 2006, Palaeoproterozoic A-type felsic magmatism in the Khetri Copper Belt, Rajasthan, northwestern India: Petrologic and tectonic implications: Mineralogy and Petrology, v. 87, p. 81–122. doi:10.1007/s00710-005-0118-0
  • Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., and Hofmann, A.W., 2007, Geochemistry, zircon ages and whole-rock Nd isotopic systematics for Palaeoproterozoic A-type granitoids in the northern part of the Delhi belt, Rajasthan, NW India: Implications for late Palaeoproterozoic crustal evolution of the Aravalli craton: Geological Magazine, v. 144, p. 361–378. doi:10.1017/S0016756806002950
  • Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., and Hofmann, A.W., 2009, Record of 1.82 Ga Andean-type continental arc magmatism in NE Rajasthan, India: Insights from zircon and Sm–Nd ages, combined with Nd–Sr isotope geochemistry: Gondwana Research, v. 16, p. 56–71. doi:10.1016/j.gr.2009.03.009
  • Le Roex, A.P., Dick, H.J.B., Gulen, L., Reid, A.M., and Erlank, A.J., 1987, Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54.5°S and 51°S: Evidence for geochemical enrichment: Geochimica Et Cosmochimica Acta, v. 51, p. 541–555. doi:10.1016/0016-7037(87)90068-8
  • Le Roux, P.J., Le Roex, A.P., Schilling, J.-G., Shimizu, N., Perkins, W.W., and Pearce, N.J.G., 2002, Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: Trace element evidence for contamination of ambient asthenospheric mantle: Earth and Planetary Science Letters, v. 203, p. 479–498. doi:10.1016/S0012-821X(02)00832-4
  • Li, Y., Barnes, M.A., Barnes, C.G., and Frost, C.D., 2007, Grenville-age A-type and related magmatism in southern Laurentia, Texas and New Mexico, USA: Lithos, v. 97, p. 58–87. doi:10.1016/j.lithos.2006.12.010
  • Lonsdale, P., Blum, N., and Puchelt, H., 1992, The RRR triple junction at the southern end of the Pacific-Cocos East Pacific Rise: Earth and Planetary Science Letters, v. 109, p. 73–85. doi:10.1016/0012-821X(92)90075-7
  • Lumbers, S.B., Wu, T.-W., Heaman, L.M., Vertolli, V.M., and MacRae, N.D., 1991, Petrology and age of the A-type Mulock granite batholith, northern Grenville Province, Ontario: Precambrian Research, v. 53, p. 199–231. doi:10.1016/0301-9268(91)90072-I
  • Mahoney, J.J., Jones, W.B., Frey, F.A., Salters, V.J.M., Pyle, D.G., and Davies, H.L., 1995, Geochemical characteristics of lavas from Broken ridge, the Naturaliste plateau and southernmost Kerguelen plateau: Cretaceous plateau volcanism in the southeast Indian Ocean: Chemical Geology, v. 120, p. 315–345. doi:10.1016/0009-2541(94)00144-W
  • Maxeiner, R.O., Corrigan, D., Harper, C.T., MacDougall, D.G., and Ansdell, K., 2005, Paleoproterozoic arc and ophiolitic rocks on the northwest-margin of the Trans-Hudson Orogen, Saskatchewan, Canada: Their contribution to a revised tectonic framework for the orogen: Precambrian Research, v. 136, p. 67–106. doi:10.1016/j.precamres.2004.10.003
  • McLelland, J.M., Selleck, B.W., Hamilton, M.A., and Bickford, M.E., 2010, Late- to post-tectonic setting of some major Proterozoic anorthosite–mangerite–charnockite–granite (AMCG) suites: The Canadian Mineralogist, v. 48, p. 729–750. doi:10.3749/canmin.48.4.729
  • Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-1bZr-1bY diagram: Chemical Geology, v. 56, p. 207–218. doi:10.1016/0009-2541(86)90004-5
  • Middlemost, E.A.K., 1989, Iron oxidation ratios, norms and the classification of volcanic rocks: Chemical Geology, v. 77, p. 19–26. doi:10.1016/0009-2541(89)90011-9
  • Mohan, M.R., Sarma, D.S., McNaughton, N.J., Fletcher, I.R., Wilde, S.A., Siddiqui, M.A., Rasmussen, B., Krapez, B., Gregory, C.J., and Kamo, S.L., 2014, SHRIMP zircon and titanite U-Pb ages, Lu-Hf isotope signatures and geochemical constraints for ∼2.56 Ga granitic magmatism in Western Dharwar Craton, Southern India: Evidence for short-lived Neoarchean episodic crustal growth?: Precambrian Research, in press. doi:10.1016/j.precamres.2013.12.017
  • Mohan, M.R., Singh, S.P., Santosh, M., Siddiqui, M.A., and Balaram, V., 2012, TTG suite from the Bundelkhand craton, central India: Geochemistry, petrogenesis and implications for Archean crustal evolution: Journal of Asian Earth Sciences, v. 58, p. 38–50. doi:10.1016/j.jseaes.2012.07.006
  • Montreuil, J.-F., and Constantin, M., 2010, The geochemistry of mafic gneisses from the Renzy terrane, western Grenville Province, Quebec: Implications for the geodynamic setting of the early Mesoproterozoic Laurentian margin: Precambrian Research, v. 181, p. 150–166. doi:10.1016/j.precamres.2010.06.001
  • Nakamura, K., Kato, Y., Tamaki, K., and Ishii, T., 2007, Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction: Marine Geology, v. 239, p. 125–141. doi:10.1016/j.margeo.2007.01.003
  • Neal, C.R., Mahoney, J.J., and Chazey III, W.J., 2002, Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183: Journal of Petrology, v. 43, p. 1177–1205. doi:10.1093/petrology/43.7.1177
  • Neogi, S., Miura, H., and Hariya, Y., 1996, Geochemistry of the Dongargarh volcanic rocks, Central India: Implications for the Precambrian mantle: Precambrian Research, v. 76, p. 77–91. doi:10.1016/0301-9268(95)00025-9
  • Pandarinath, K., 2014, Testing of the recently developed tectonomagmatic discrimination diagrams from hydrothermally altered igneous rocks of 7 geothermal fields: Turkish Journal of Earth Sciences. doi:10.3906/yer-1401-27
  • Pandarinath, K., and Verma, S.K., 2013, Application of four sets of tectonomagmatic discriminant function based diagrams to basic rocks from northwest Mexico: Journal of Iberian Geology, v. 39, p. 181–195. doi:10.5209/rev_JIGE.2013.v39.n1.41758
  • Parent, S.-E., Parent, L.E., Egozcue, J.J., Rozane, D.-E., Hernandes, A., Lapointe, L., Hébert-Gentile, V., Naess, K., Marchand, S., Lafond, J., Mattos Jr., D., Barlow, P., and Natale, W., 2013, The plant ionome revisited by the nutrient balance concept: Frontiers in Plant Science, v. 4. doi:10.3389/fpls.2013.00039.
  • Pawlowsky-Glahn, V., and Egozcue, J.J., 2006, Compositional data and their analysis: An introduction, in Buccianti, A., Mateu-Figueras, G., and Pawlowsky-Glahn, V., eds., Compositional data analysis in the geosciences: From theory to practice: The Geological Society of London Special Publication, v. 164, p. 1–10.
  • Pearce, J.A., 1975, Basalt geochemistry used to investigate past tectonic environments on Cyprus: Tectonophysics, v. 25, p. 41–67. doi:10.1016/0040-1951(75)90010-4
  • Pearce, J.A., 1982, Trace element characteristics of lavas from destructive plate boundaries, in Thorpe, R.S., ed., Andesites: Chichester, John Wiley & Sons, p. 525–548.
  • Pearce, J.A., and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses: Earth and Planetary Science Letters, v. 19, p. 290–300. doi:10.1016/0012-821X(73)90129-5
  • Pearce, J.A., and Gale, G.H., 1977, Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks: Geological Society, London, Special Publications, v. 7, p. 14–24. doi:10.1144/GSL.SP.1977.007.01.03
  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956–983. doi:10.1093/petrology/25.4.956
  • Pearce, J.A., and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks: Contributions to Mineralogy and Petrology, v. 69, p. 33–47. doi:10.1007/BF00375192
  • Polat, A., 2013, Geochemical variations in Archean volcanic rocks, southwestern Greenland: Traces of diverse tectonic settings in the early Earth: Geology, v. 41, p. 379–380. doi:10.1130/focus0320131.1
  • Polat, A., Frei, R., Fryer, B., and Appel, P.W.U., 2009, The origin of geochemical trends and Eoarchean (ca. 3700 Ma) zircons in Mesoarchean (ca. 3075 Ma) ocelli-hosting pillow basalts, Ivisaartoq greenstone belt, SW Greenland: Evidence for crustal contamination versus crustal recycling: Chemical Geology, v. 268, p. 248–271. doi:10.1016/j.chemgeo.2009.09.004
  • Polat, A., Fryer, B.J., Appel, P.W.U., Kalvig, P., Kerrich, R., Dilek, Y., and Yang, Z., 2011, Geochemistry of anorthositic differentiated sills in the Archean (~2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs: Lithos, v. 123, p. 50–72. doi:10.1016/j.lithos.2010.12.003
  • Price, R.C., Kennedy, A.K., Riggs-Sneeringer, M., and Frey, F.A., 1986, Geochemistry of basalts from the Indian Ocean triple junction: Implications for the generation and evolution of Indian Ocean ridge basalts: Earth and Planetary Science Letters, v. 78, p. 379–396. doi:10.1016/0012-821X(86)90005-1
  • Rao, V.D., Narayana, B.L., Rao, P.R., Murthy, N.N., Rao, M.V.S., Rao, J.M., and Reddy, G.L.N., 2000, Precambrian acid volcanism in Central India – geochemistry and origin: Gondwana Research, v. 3, p. 215–226. doi:10.1016/S1342-937X(05)70098-8
  • Ray, D., Iyer, S.D., Banerjee, R., Misra, S., and Widdowson, M., 2007, A petrogenetic model of basalts from the northern Central Indian Ridge: 3–11°S: Acta Geologica Sinica, v. 81, p. 99–112.
  • Roser, B.P., and Korsch, R.J., 1986, Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio: The Journal of Geology, v. 94, p. 635–650. doi:10.1086/629071
  • Schilling, J.-G., Kingsley, R.H., and Devine, J.D., 1982, Galapagos hot spot-spreading center system: 1. Spatial petrological and geochemical variations (83°W–101°W): Journal of Geophysical Research, v. 87, p. 5593–5610. doi:10.1029/JB087iB07p05593
  • Schilling, J.-G., Zajac, M., Evans, R., Johnston, T., White, W., Devine, J.D., and Kingsley, R., 1983, Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N: American Journal of Science, v. 283, p. 510–586. doi:10.2475/ajs.283.6.510
  • Sensarma, S., Hoernes, S., and Mukhopadhyay, D., 2004, Relative contributions of crust and mantle to the origin of the Bijli rhyolite in a palaeoproterozoic bimodal volcanic sequence (Dongargarh Group), central India: Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), v. 113, p. 619–648.
  • Shervais, J.W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas: Earth and Planetary Science Letters, v. 59, p. 101–118. doi:10.1016/0012-821X(82)90120-0
  • Sheth, H.C., 2008, Do major oxide tectonic discrimination diagrams work? Evaluating new log-ratio and discriminant-analysis-based diagrams with Indian Ocean mafic volcanics and Asian ophiolites: Terra Nova, v. 20, p. 229–236. doi:10.1111/j.1365-3121.2008.00811.x
  • Sims, K.W.W., Blichert-Toft, J., Fornari, D.J., Perfit, M.R., Goldstein, S.J., Johnson, P., DePaolo, D.J., Hart, S.R., Murrell, M.T., Michael, P.J., Layne, G.D., and Ball, L.A., 2003, Aberrant youth: Chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9°–10°N: Geochemistry Geophysics Geosystems, v. 4, p. 8621. doi:10.1029/2002GC000443
  • Srivastava, R.K., 2013, Petrological and geochemical characteristics of Paleoproterozoic ultramafic lamprophyres and carbonatites from the Chitrangi region, Mahakoshal supracrustal belt, central India: Journal of Earth System Science, v. 122, p. 759–776. doi:10.1007/s12040-013-0311-1
  • Storey, M., Kent, R.W., Saunders, A.D., Salters, V.J., Hergt, J., Whitechurch, H., Sevigny, J.H., Thirlwall, M.F., Leat, P., Ghose, N.C., and Gifford, M., 1992, Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen plateau: Proceedings of the Ocean Drilling Program, Scientific Results, v. 120, p. 33–53.
  • Thériault, R.J., St-Onge, M.R., and Scott, D.J., 2001, Nd isotopic and geochemical signature of the Paleoproterozoic Trans-Hudson Orogen, southern Baffin Island, Canada: Implications for the evolution of eastern Laurentia: Precambrian Research, v. 108, p. 113–138. doi:10.1016/S0301-9268(00)00159-5
  • Timm, C., Hoernle, K., Werner, R., Hauff, F., van den Bogaard, P., Michael, P., Coffin, M.F., and Koppers, A., 2011, Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin: Earth and Planetary Science Letters, v. 304, p. 135–146. doi:10.1016/j.epsl.2011.01.025
  • Tomson, J.K., Rao, Y.J.B., Kumar, T.V., and Choudhary, A.K., 2013, Geochemistry and neodymium model ages of Precambrian charnockites, Southern Granulite Terrain, India: Constraints on terrain assembly: Precambrian Research, v. 227, p. 295–315. doi:10.1016/j.precamres.2012.06.014
  • Vaisanen, M., Manttari, I., Kriegsman, L.M., and Holtta, P., 2000, Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland: Lithos, v. 54, p. 63–81. doi:10.1016/S0024-4937(00)00018-9
  • Van Lente, B., Ashwal, L.D., Pandit, M.K., Bowring, S.A., and Torsvik, T.H., 2009, Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton: Precambrian Research, v. 170, p. 202–222. doi:10.1016/j.precamres.2009.01.007
  • Velasco-Tapia, F., and Verma, S.P., 2013, Magmatic processes at the volcanic front of Central Mexican Volcanic Belt: Sierra de Chichinautzin volcanic field (Mexico): Turkish Journal of Earth Sciences, v. 22, p. 32–60.
  • Verma, S.K., and Oliveira, E.P., 2013, Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings: Journal of South American Earth Sciences, v. 45, p. 117–146. doi:10.1016/j.jsames.2013.03.009
  • Verma, S.K., Pandarinath, K., and Verma, S.P., 2012, Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks: International Geology Review, v. 54, p. 325–347. doi:10.1080/00206814.2010.543784
  • Verma, S.K., and Verma, S.P., 2013a, Identification of Archaean plate tectonic processes from multidimensional discrimination diagrams and probability calculations: International Geology Review, v. 55, p. 225–248. doi:10.1080/00206814.2012.693246
  • Verma, S.P., 2009, Continental rift setting for the central part of the Mexican Volcanic Belt: A statistical approach: The Open Geology Journal, v. 3, p. 8–29. doi:10.2174/1874262900903010008
  • Verma, S.P., 2010, Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams: Turkish Journal of Earth Sciences, v. 19, p. 185–238.
  • Verma, S.P., 2012a, Geochemometrics: Revista Mexicana De Ciencias Geológicas, v. 29, p. 276–298.
  • Verma, S.P., 2012b, Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain: Comunicações Geológicas, v. 99, p. 79–93.
  • Verma, S.P., 2013, Application of 50 multi-dimensional discrimination diagrams and significance tests: Deciphering compositional similarities and differences between Hawaiian and Icelandic volcanism: International Geology Review, v. 55, p. 1553–1572. doi:10.1080/00206814.2013.788239
  • Verma, S.P., and Agrawal, S., 2011, New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes: Revista Mexicana De Ciencias Geológicas, v. 28, p. 24–44.
  • Verma, S.P., and Armstrong-Altrin, J.S., 2013, New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins: Chemical Geology, v. 355, p. 117–133. doi:10.1016/j.chemgeo.2013.07.014
  • Verma, S.P., Cruz-Huicochea, R., and Díaz-González, L., 2013a, Univariate data analysis system: Deciphering mean compositions of island and continental arc magmas, and influence of the underlying crust: International Geology Review, v. 55, p. 1922–1940. doi:10.1080/00206814.2013.810363
  • Verma, S.P., and Díaz-González, L., 2012, Application of the discordant outlier detection and separation system in the geosciences: International Geology Review, v. 54, p. 593–614. doi:10.1080/00206814.2011.569402
  • Verma, S.P., Guevara, M., and Agrawal, S., 2006, Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data: Journal of Earth System Science, v. 115, p. 485–528. doi:10.1007/BF02702907
  • Verma, S.P., Pandarinath, K., Verma, S.K., and Agrawal, S., 2013b, Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks: Lithos, v. 168–169, p. 113–123. doi:10.1016/j.lithos.2013.01.014
  • Verma, S.P., and Rivera-Gómez, M.A., 2013a, Computer programs for the classification and nomenclature of igneous rocks: Episodes, v. 36, p. 115–124.
  • Verma, S.P., and Rivera-Gómez, M.A., 2013b, New computer program TecD for tectonomagmatic discrimination from discriminant function diagrams for basic and ultrabasic magmas and its application to ancient rocks: Journal of Iberian Geology, v. 39, p. 167–179. doi:10.5209/rev_JIGE.2013.v39.n1.41757
  • Verma, S.P., Torres-Alvarado, I.S., and Sotelo-Rodrı́guez, Z.T., 2002, SINCLAS: Standard igneous norm and volcanic rock classification system: Computers & Geosciences, v. 28, p. 711–715. doi:10.1016/S0098-3004(01)00087-5
  • Verma, S.P., and Verma, S.K., 2013b, First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes: Turkish Journal of Earth Sciences, v. 22, p. 931–995. doi:10.3906/yer-1204-6
  • Verma, S.P., Verma, S.K., Pandarinath, K., and Rivera-Gómez, M.A., 2011, Evaluation of recent tectonomagmatic discrimination diagrams and their application to the origin of basic magmas in Southern Mexico and Central America: Pure and Applied Geophysics, v. 168, p. 1501–1525. doi:10.1007/s00024-010-0173-2
  • Viereck, L.G., Hertogen, J., Parson, L.M., Morton, A.C., Love, D., and Gibson, I.L., 1989, Chemical stratigraphy and petrology of the Voring Plateau tholeiitic lavas and interlayered volcaniclastic sediments at ODP Hole 642: Proceedings of the Ocean Drilling Program, Scientific Results, v. 164, p. 367–396.
  • Wang, W., Liu, S., Wilde, S.A., Li, Q., Zhang, J., Bai, X., Yang, P., and Guo, R., 2012, Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: Constraints on Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton: Precambrian Research, v. 222–223, p. 290–311. doi:10.1016/j.precamres.2011.10.023
  • Williams, I.S., Krzemińska, E., and Wiszniewska, J., 2009, An extension of the Svecofennian orogenic province into NE Poland: Evidence from geochemistry and detrital zircon from Paleoproterozoic paragneisses: Precambrian Research, v. 172, p. 234–254. doi:10.1016/j.precamres.2009.04.009
  • Wiszniewska, J., Krzeminska, E., and Dörr, W., 2007, Evidence of arc-related Svecofennian magmatic activity in the southwestern margin of the East European Craton in Poland: Gondwana Research, v. 12, p. 268–278. doi:10.1016/j.gr.2006.10.002
  • Wood, D.A., 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province: Earth and Planetary Science Letters, v. 50, p. 11–30. doi:10.1016/0012-821X(80)90116-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.