461
Views
9
CrossRef citations to date
0
Altmetric
Articles

The Precambrian supercontinent Palaeopangaea: two billion years of quasi-integrity and an appraisal of geological evidence

Pages 1389-1417 | Received 28 Feb 2014, Accepted 04 Jul 2014, Published online: 13 Aug 2014

References

  • Abbott, D.H., and Isley, A.E., 2002, The intensity, occurrence and duration of superplume events and eras over geological time: Journal of Geodynamics, v. 34, p. 265–307. doi:10.1016/S0264-3707(02)00024-8
  • Abdel-Rahman, A.F.M., and Martin, R.F., 1987, Late Pan-African magmatism and crustal development in northeastern Egypt: Geological Journal, v. 22, p. 281–301. doi:10.1002/gj.3350220403
  • Åberg, G., 1988, Middle Proterozoic anorogenic magmatism in Sweden and worldwide: Lithos, v. 21, p. 279–289. doi:10.1016/0024-4937(88)90033-3
  • Anderson, D.L., 1982, Hotspots, polar wander, Mesozoic convection and the geoid: Nature, v. 297, p. 391–393. doi:10.1038/297391a0
  • Anderson, J.L., and Morrison, J., 2005, Ilmenite, magnetite and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica: Lithos, v. 80, p. 45–60. doi:10.1016/j.lithos.2004.05.008
  • Bak, J., Sørensen, K., Grocott, J., Korstgård, J.A., Nash, D., and Watterson, J., 1975, Tectonic implications of Precambrian shear belts in western Greenland: Nature, v. 254, p. 566–569. doi:10.1038/254566a0
  • Barley, M.E., Bekker, A., and Krapez, B., 2005, Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen: Earth and Planetary Science Letters, v. 238, p. 156–171. doi:10.1016/j.epsl.2005.06.062
  • Bell, R.T., and Jefferson, C.W., 1987, An hypothesis for an Australia–Canadian connection in the late Proterozoic and the birth of the Pacific Ocean: Australian. Institute Mining and Metallurgy, v. 87, p. 29–50.
  • Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O’Reilly, S.Y., and Pearson, N.J., 2010, The growth of the continental crust: Constraints from zircon Hf-isotope data: Lithos, v. 119, p. 457–466. doi:10.1016/j.lithos.2010.07.024
  • Bennett, V.C., 2003, Compositional evolution of the mantle, in Carlson, R.W., ed., The Mantle and Core: Treatise of Geochemistry: Oxford, Pergamon, p. 493–519.
  • Berthelsen, A., and Marker, M., 1986, Tectonics of the Kola collision suture and adjacent Archaean and Early Proterozoic terrains in the northeastern region of the Baltic Shield: Tectonophysics, v. 126, p. 31–55. doi:10.1016/0040-1951(86)90219-2
  • Black, R., and Liegeois, J.-P., 1993, Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: The Pan-African testimony: Journal of the Geological Society of London, v. 150, p. 89–98. doi:10.1144/gsjgs.150.1.0088
  • Bleeker, W., 2003, The late Archean record: A puzzle in ca. 35 pieces: Lithos, v. 71, p. 99–134. doi:10.1016/j.lithos.2003.07.003
  • Bogdanova, S.V., 1999, The Palaeoproterozoic growth of the East European Craton: Terra Nova, v. 5, p. 313.
  • Bond, G.C., 1997, New constraints on Rodinia breakup ages from revised tectonic subsidence curves: Geological Society of America Abstract Progam, v. 29, p. A–280.
  • Bond, G.C., Nickeson, P.A., and Kominz, M.A., 1984, Breakup of a supercontinent between 625 Ma and 555 Ma: New evidence and implications for continental histories: Earth and Planetary Science Letters, v. 70, p. 325–345. doi:10.1016/0012-821X(84)90017-7
  • Bridgwater, D., Austryeim, H., Hansen, B.T., Mengel, F., Peterson, S., and Winter, J., 1990, The Proterozoic Nagssugtoqidian mobile belt of southeast Greenland: A link between the eastern Canadian and Baltic shields: Geoscience Canada, v. 17, p. 305–310.
  • Bridgwater, D., Sutton, J., and Watterson, J., 1974, Crustal downfolding associated with igneous activity: Tectonophysics, v. 21, p. 57–77. doi:10.1016/0040-1951(74)90062-6
  • Bridgwater, D., and Windley, B.F., 1973, Anorthosites, post-orogenic granies, acid volcanic rocks and crustal development in the North Atlantic Shield during the Proterozoic, in Lister, L.A., ed., Symposium on Granites and Related Rocks: Geological Society of South Africa Special Publication 3, p. 307–318.
  • Brosche, P., and Sundermann, J., 1981, Tidal Friction and the Earth’s Rotation II: Berlin, Springer-Verlag, 344 p.
  • Buchan, K.L., Mertanen, S., Park, R.G., Pesonen, L.J., Elming, S.-A., Abrahamsen, N., and Bylund, G., 2000, Comparing the drift of Laurentia and Baltica in the Proterozoic: The importance of key palaeomagnetic poles: Tectonophysics, v. 319, p. 167–198. doi:10.1016/S0040-1951(00)00032-9
  • Cheney, E.S., 1996, Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia: Precambrian Research, v. 79, p. 3–24. doi:10.1016/0301-9268(95)00085-2
  • Choubry, V.D., 1971, Narmada-Son lineament, India: Nature (Physical Sciences), v. 232, p. 38–40.
  • Coltice, N., Bertrand, H., Rey, P., Jourdan, F., Phillips, B.R., and Ricard, Y., 2009, Global warming of the mantle beneath continents back to the Archaean: Gondwana Research, v. 15, p. 254–266. doi:10.1016/j.gr.2008.10.001
  • Coltice, N., Phillips, B.R., Bertrand, H., Ricard, Y., and Rey, P., 2007, Global warming of the mantle at the origin of flood basalts over supercontinents: Geology, v. 35, p. 391–394. doi:10.1130/G23240A.1
  • Condie, K.C., 1997, Plate tectonics and crustal evolution: Oxford, Butterworth Heinemann, 282 p.
  • Condie, K.C., 2004, Supercontinents and superplume events: Distinguishing signals in the geologic record: Physics of the Earth and Planetary Interiors, v. 146, p. 319–332. doi:10.1016/j.pepi.2003.04.002
  • Condie, K.C., Belousova, E., Griffin, W.L., and Sircombe, K.N., 2009a, Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra: Gondwana Research, v. 15, p. 228–242. doi:10.1016/j.gr.2008.06.001
  • Condie, K.C., O’Neill, C., and Aster, R.C., 2009b, Evidence and implications for a widespread magmatic shutdown for 250 My on Earth: Earth and Planetary Science Letters, v. 282, p. 294–298. doi:10.1016/j.epsl.2009.03.033
  • Conway Morris, S., 1987, The search for the Precambrian–Cambrian boundary: American Scientist, v. 75, p. 157–168.
  • Cook, P.J., and Shergold, J.H., 1984, Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary: Nature, v. 308, p. 231–236. doi:10.1038/308231a0
  • Dalziel, I.W.D., 1991, Pacific margins of Laurentia and East Antarctica–Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent: Geology, v. 19, p. 598–601. doi:10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2
  • Dalziel, I.W.D., 1997, OVERVIEW: Neoproterozoic–Paleozoic geography and tectonics: Review, hypothesis, environmental speculation: Geological Society of America Bulletin, v. 109, p. 16–42. doi:10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2
  • Davies, G.F., 1980, Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth: Journal of Geophysical Research, v. 85, p. 2517–2530. doi:10.1029/JB085iB05p02517
  • De Wit, M.J., Thiart, C., Doucouré, M., and Wilsher, W., 1999, Scent of a supercontinent: Gondwana’s ores as chemical tracers—tin, tungsten and the Neoproterozoic Laurentia-Gondwana connection: Journal of African Earth Sciences, v. 28, p. 35–51. doi:10.1016/S0899-5362(98)00085-2
  • Deen, T., Griffin, W.L., Begg, G., O’Reilly, S.Y., Natapov, L.M., and Hronsky, J., 2006, Thermal and compositional structure of the subcontinental lithospheric mantle: Derivation from shear-wave seismic tomography: Geochemistry, Geophysics, Geosystems. doi:10.1029/2005GC001120
  • Doblas, M., López-Ruiz, J., Cebriá, J.-M., Youbi, N., and Degroote, E., 2002, Mantle insulation beneath the West African craton during the Precambrian–Cambrian transition: Geology, v. 30, p. 839–842. doi:10.1130/0091-7613(2002)030<0839:MIBTWA>2.0.CO;2
  • Doig, R., 1970, An alkaline rock province linking Europe and North America: Canadian Journal of Earth Sciences, v. 7, p. 22–28. doi:10.1139/e70-002
  • Dunlop, D.J., and Yu, Y., 2004, Intensity and polarity of the Geomagnetic field during Precambrian time, in Channell, J.E.T., Kent, D.V., Lowrie, W., and Meert, J.G., eds., Timescales of the Palaeomagnetic Field, Volume 145: American Geophysical Union Geophysical Monograph Series, p. 85–100.
  • Eisbacher, G.H., 1985, Late Proterozoic rifting, glacial sedimentation and sedimentary cycles in the light of Windermere deposition, Western Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 51, p. 231–254. doi:10.1016/0031-0182(85)90087-2
  • Engel, A.E.J., Itson, S.P., Engel, C.G., Stickney, D.M., and Cray, E.J., 1974, Crustal Evolution and Global Tectonics: A Petrogenic View: Geological Society of America Bulletin, v. 85, p. 843–858. doi:10.1130/0016-7606(1974)85<843:CEAGTA>2.0.CO;2
  • Ernst, R.E., Buchan, K.L., and Campbell, I.H., 2005, Frontiers in Large Igneous Province research: Lithos, v. 79, p. 271–297.
  • Evans, D.A.D., 2003, A fundamental Precambrian–Phanerozoic shift in earth’s glacial style?: Tectonophysics, v. 375, p. 353–385. doi:10.1016/S0040-1951(03)00345-7
  • Evans, D.A.D., 2006, Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes: Nature, v. 444, p. 51–55. doi:10.1038/nature05203
  • Evans, D.A.D., 2010, The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction, in Murphy, J.B., Keppie, J.D., and Hynes, A.J., eds., Ancient orogens and modern analogues: Geological Society of London Special Publication 327, p. 371–404.
  • Evans, D.A.D., and Halls, H.C., 2010, Restoring Proterozoic deformation within the Superior craton: Precambrian Research, v. 183, p. 474–489. doi:10.1016/j.precamres.2010.02.007
  • Evans, M.E., 1976, Test of the dipolar nature of the geomagnetic field throughout Phanerozoic time: Nature, v. 262, p. 676–677. doi:10.1038/262676a0
  • Evans, M.E., 2005, Testing the geomagnetic dipole hypothesis: Palaeolatitudes sampled by large continents: Geophysical Journal International, v. 161, p. 266–267. doi:10.1111/j.1365-246X.2005.02628.x
  • Feybesse, J.L., and Milési, J.P., 1994, The Archaean/Proterozoic contact zone in West Africa: A mountain belt of décollement thrusting and folding on a continental margin related to 2.1 Ga convergence of Archaean cratons?: Precambrian Research, v. 69, p. 199–227. doi:10.1016/0301-9268(94)90087-6
  • Gallet, Y., Pavlov, V.E., Semikhatov, M.A., and Petrov, P.Y., 2000, Late Mesoproterozoic magnetostratigraphic results from Siberia: Paleogeographic implications and magnetic field behavior: Journal of Geophysical Research, v. 105, p. 16481–16499. doi:10.1029/1999JB900354
  • Garrels, R.M., and Mackenzie, F.T., 1971, Evolution of the Sedimentary Rocks: New York, W.W. Norton, 387 p.
  • Gerya, T., 2014, Precambrian geodynamics: Concepts and models: Gondwana Research, v. 25, p. 442–463. doi:10.1016/j.gr.2012.11.008
  • Goldfarb, R.J., Groves, D.I., and Gardoll, S., 2001, Rotund versus skinny orogens: Well-nourished or malnourished gold?: Geology, v. 29, p. 539–542. doi:10.1130/0091-7613(2001)029<0539:RVSOWN>2.0.CO;2
  • Goodwin, A.M., 1973, Plate Tectonics and evolution of the Precambrian crust, in Tarling, D.H., and Runcorn, S.K., eds., Implications of continental drift to the earth sciences: London, Academic Press, p. 1047–1069.
  • Gower, C.F., Ryan, A.B., and Rivers, T., 1990, Mid-Proterozoic Laurentia-Baltica: An overview of its geological evolution and a summary of the contributions made by this volume, in Gover, C.F., Rivers, T., and Ryan, A.B., eds., Mid-Proterozoic Laurentia-Baltica: Geological Association of Canada Special Paper 38, p. 1–20.
  • Grey, K., Walter, M.R., and Calver, C.R., 2003, Neoproterozoic biotic diversification: Snowball Earth or aftermath of the Acraman impact?: Geology, v. 31, p. 459–462. doi:10.1130/0091-7613(2003)031<0459:NBDSEO>2.0.CO;2
  • Griffin, W.L., O’Reilly, S.Y., Afonso, J.C., and Begg, G.C., 2009, The composition and evolution of lithospheric mantle: A Re-evaluation and its tectonic implications: Journal of Petrology, v. 50, p. 1185–1204. doi:10.1093/petrology/egn033
  • Gross, G.A., 1983, Tectonic systems and the deposition of iron formations: Precambrian Research, v. 20, p. 171–187. doi:10.1016/0301-9268(83)90072-4
  • Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., 2010, Neoproterozoic chemostratigraphy: Precambrian Research, v. 182, p. 337–350. doi:10.1016/j.precamres.2010.04.007
  • Hanmer, S., Corrigan, D., Pehrsson, S., and Nadeau, L., 2000, SW Grenville province, Canada: The case against post-1.4 Ga accretionary tectonics: Tectonophysics, v. 319, p. 33–51. doi:10.1016/S0040-1951(99)00317-0
  • Harris, N.B.W., and Gass, I.G., 1981, Significance of contrasting magmatism in North East Africa and Saudi Arabia: Nature, v. 289, p. 394–396. doi:10.1038/289394a0
  • Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., and Storey, C.D., 2010, The generation and evolution of the continental crust: Journal of the Geological Society of London, v. 167, p. 229–248. doi:10.1144/0016-76492009-072
  • Hawkesworth, C.J., and Kemp, I.S., 2006, Evolution of the continental crust: Nature, v. 443, p. 811–817. doi:10.1038/nature05191
  • Hazan, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H., 2008, Mineral evolution: American Mineralogist, v. 93, p. 1693–1720. doi:10.2138/am.2008.2955
  • Hoffman, P.F., 1988, United plates of America, the birth of a craton: Early Proterozoic assembly and growth of laurentia: Annual Review of Earth and Planetary Sciences, v. 16, p. 543–603. doi:10.1146/annurev.ea.16.050188.002551
  • Hoffman, P.F., 1991, Did the breakout of laurentia turn gondwanaland inside-out?: Science, v. 252, p. 1409–1412. doi:10.1126/science.252.5011.1409
  • Hoffman, P.F., and Schrag, D.P., 2002, The snowball Earth hypothesis: Testing the limits of global change: Terra Nova, v. 14, p. 129–155. doi:10.1046/j.1365-3121.2002.00408.x
  • Holland, H.D., 2006, The oxygenation of the atmosphere and oceans: Philosophical Transactions of the Royal Society B: Biological Sciences, v. 361, p. 903–915. doi:10.1098/rstb.2006.1838
  • Holser, W.T., 1977, Catastrophic chemical events in the history of the oceans: Nature, v. 267, p. 403–408. doi:10.1038/267403a0
  • Hurtgen, M.T., Arthur, M.A., Suits, N.S., and Kaufman, A.J., 2002, The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a snowball Earth?: Earth and Planetary Science Letters, v. 203, p. 413–429. doi:10.1016/S0012-821X(02)00804-X
  • Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D., Li, Y., Maruyama, S., and Yoshida, N., 2008, Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion: Gondwana Research, v. 14, p. 193–208. doi:10.1016/j.gr.2007.10.008
  • Kah, L.C., and Bartley, J.K., editors, 2001, Rodinia and the Mesoproterozoic Earth–Ocean system: Precambrian Research, v. 111, p. 1–3. doi:10.1016/S0301-9268(01)00153-X
  • Karlstrom, K.E., Åhäll, K.I., Harlan, S.S., Williams, M.L., McLelland, J., and Geissman, J.W., 2001, Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia: Precambrian Research, v. 111, p. 5–30. doi:10.1016/S0301-9268(01)00154-1
  • Kent, D.V., and Smethurst, M.A., 1998, Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian: Earth and Planetary Science Letters, v. 160, p. 391–402. doi:10.1016/S0012-821X(98)00099-5
  • Klein, C., 2005, Some Precambrian banded iron formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry and origins: American Mineralogist, v. 90, p. 1473–1499. doi:10.2138/am.2005.1871
  • Knoll, A.H., Hayes, J.M., Kaufman, J., Swett, K., and Lambert, I.B., 1986, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland: Nature, v. 321, p. 832–838. doi:10.1038/321832a0
  • Korenaga, J., 2006, Archean geodynamics and the thermal evoluation of the Earth, in Benn, K., Mareschal, J.-C., and Condie, K.C., eds., Archean geodynamics and environments: Washington, Geophysical Monograph 164, American Geophysical Union, p. 7–32.
  • Korenaga, J., 2008, Urey ratio and the structure and evolution of Earth’s mantle: Reviews of Geophysics, v. 46. doi:10.1029/2007RG000241
  • Kröner, A., editor, 1982, Precambrian plate tectonics: Amsterdam, Elsevier, 686 p.
  • Kröner, A., Wilde, S.A., Li, J.H., and Wang, K.Y., 2005, Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China: Journal of Asian Earth Sciences, v. 24, p. 577–595. doi:10.1016/j.jseaes.2004.01.001
  • Kump, L.R., and Barley, M.E., 2007, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago: Nature, v. 448, p. 1033–1036. doi:10.1038/nature06058
  • Larson, R.L., 1991, Latest pulse of Earth: Evidence for a mid-Cretaceous superplume: Geology, v. 19, p. 547–550. doi:10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
  • Ledru, P., Johan, V., Milési, J.P., and Tegyey, M., 1994, Markers of the last stages of the Palaeoproterozoic collision: Evidence for a 2 Ga continent involving circum-South Atlantic provinces: Precambrian Research, v. 69, p. 169–191. doi:10.1016/0301-9268(94)90085-X
  • Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, p. 179–210. doi:10.1016/j.precamres.2007.04.021
  • Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., and Zhou, H., 2003, Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia: Precambrian Research, v. 122, p. 85–109. doi:10.1016/S0301-9268(02)00208-5
  • Magaritz, M., Holser, W.T., and Kirschvink, J.L., 1986, Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform: Nature, v. 320, p. 258–259. doi:10.1038/320258a0
  • Maruyama, S., and Santosh, M., 2008, Models on Snowball Earth and Cambrian explosion: A synopsis: Gondwana Research, v. 14, p. 22–32. doi:10.1016/j.gr.2008.01.004
  • McFadden, P.L., 2004, Is 600 Myr long enough for the random palaeogeographic test of the geomagnetic axial dipole assumption?: Geophysical Journal International, v. 158, p. 443–445. doi:10.1111/j.1365-246X.2004.02321.x
  • McKenzie, D., 1978, Some remarks on the development of sedimentary basins: Earth and Planetary Science Letters, v. 40, p. 25–32.
  • McMenamin, M.A.S., and McMenamin, D.L., 1990, The emergence of animals: The Cambrian breakthrough: New York, Columbia University Press, 217 p.
  • Meert, J.G., 2003, A synopsis of events related to the assembly of eastern Gondwana: Tectonophysics, v. 362, p. 1–40. doi:10.1016/S0040-1951(02)00629-7
  • Meert, J.G., Tamrat, E., and Spearman, J., 2003, Non-dipole fields and inclination bias: Insights from a random walk analysis: Earth and Planetary Science Letters, v. 214, p. 395–408. doi:10.1016/S0012-821X(03)00417-5
  • Meert, J.G., and Torsvik, T.H., 2003, The making and unmaking of a supercontinent: Rodinia revisited: Tectonophysics, v. 375, p. 261–288. doi:10.1016/S0040-1951(03)00342-1
  • Melezhik, V.A., Huhma, H., Condon, D.J., Fallick, A.E., and Whitehouse, M.J., 2007, Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event: Geology, v. 35, p. 655–658. doi:10.1130/G23764A.1
  • Mertanen, S., Halls, H.C., Vuollo, J.I., Pesonen, L.J., and Stepanov, V.S., 1999, Paleomagnetism of 2.44 Ga mafic dykes in Russian Karelia, eastern Fennoscandian Shield — implications for continental reconstructions: Precambrian Research, v. 98, p. 197–221. doi:10.1016/S0301-9268(99)00050-9
  • Moore, W.D., and Webb, A.A.G., 2013, Heat pipe Earth: Nature, v. 501, p. 501–505. doi:10.1038/nature12473
  • Moores, E.M., 1991, Southwest US–East Antarctic (SWEAT) connection: A hypothesis: Geology, v. 19, p. 425–428. doi:10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2
  • Myers, J.S., 1990, Capricorn orogen, Western Australia: Australian Geological Survey Memoir, v. 3, p. 197–198.
  • Nance, R.D., and Murphy, J.D., 2013, Origins of the supercontinent cycle: Geoscience Frontiers, v. 4, p. 439–448. doi:10.1016/j.gsf.2012.12.007
  • Nance, R.D., Worsley, T.R., and Moody, J.B., 1986, Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes: Geology, v. 14, p. 514–518. doi:10.1130/0091-7613(1986)14<514:PBCALE>2.0.CO;2
  • Nomade, S., Chen, Y., Pouclet, A., Féraud, G., Théveniaut, H., Daouda, B.Y., Vidal, M., and Rigolet, C., 2003, The Guiana and the West African Shield Palaeoproterozoic grouping: New palaeomagnetic data for French Guiana and the Ivory Coast: Geophysical Journal International, v. 154, p. 677–694. doi:10.1046/j.1365-246X.2003.01972.x
  • O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T.H., and Lee, C.A., 2007, Episodic Precambrian subduction: Earth and Planetary Science Letters, v. 262, p. 552–562. doi:10.1016/j.epsl.2007.04.056
  • O’Neill, C.J., Lenardic, A., Griffin, W.L., and O’Reilly, S.Y., 2008, Dynamics of cratons in an evolving mantle: Lithos, v. 102, p. 12–24. doi:10.1016/j.lithos.2007.04.006
  • O’Nions, R.K., Evensen, N.M., and Hamilton, P.J., 1979, Geochemical modeling of mantle differentiation and crustal growth: Journal of Geophysical Research, v. 84, p. 6091–6101. doi:10.1029/JB084iB11p06091
  • Onstott, T.C., Hargraves, R.B., York, D., and Hall, C., 1984, Constraints on the motions of South American and African Shields during the Proterozoic: I. 40Ar/39Ar and paleomagnetic correlations between Venezuela and Liberia: Geological Society of America Bulletin, v. 95, p. 1045–1054. doi:10.1130/0016-7606(1984)95<1045:COTMOS>2.0.CO;2
  • Park, J.K., 1992, Plate kinematic history of Baltica during the Middle to Late Proterozoic: A model: Geology, v. 20, p. 725–728. doi:10.1130/0091-7613(1992)020<0725:PKHOBD>2.3.CO;2
  • Park, R.G., 1995, Palaeoproterozoic Laurentia-Baltica relationships: A view from the Lewisian, in Coward, M.P., and Reis, A.C., eds., Early precambrian processes: Geological Society of London Special Publication, v. 95, p. 211–224.
  • Pesonen, L.J., Elming, S.-A., Mertanen, S., Pisarevsky, S., D’Agrella-Filho, M.S., Meert, J.G., Schmidt, P.W., Abrahamsen, N., and Bylund, G., 2003, Palaeomagnetic configuration of continents during the Proterozoic: Tectonophysics, v. 375, p. 289–324. doi:10.1016/S0040-1951(03)00343-3
  • Piper, J.D.A., 1980, Analogous upper Proterozoic apparent polar wander loops: Nature, v. 283, p. 845–847. doi:10.1038/283845a0
  • Piper, J.D.A., 1982, The Precambrian palaeomagnetic record: The case for the Proterozoic supercontinent: Earth and Planetary Science Letters, v. 59, p. 61–89. doi:10.1016/0012-821X(82)90118-2
  • Piper, J.D.A., 1987, Palaeomagnetism and the continental crust: Milton Keynes, Open University Press, 434 p.
  • Piper, J.D.A., 1991, The quasi-rigid premise in Precambrian tectonics: Earth and Planetary Science Letters, v. 107, p. 559–569. doi:10.1016/0012-821X(91)90101-M
  • Piper, J.D.A., 2007, The Neoproterozoic Supercontinent Palaeopangaea: Gondwana Research, v. 12, p. 202–227. doi:10.1016/j.gr.2006.10.014
  • Piper, J.D.A., 2010a, Protopangaea: Palaeomagnetic definition of Earth’s oldest (mid-Archaean–Palaeoproterozoic) supercontinent: Journal of Geodynamics, v. 50, p. 154–165. doi:10.1016/j.jog.2010.01.002
  • Piper, J.D.A., 2010b, Palaeopangaea in Meso-Neoproterozoic times: The palaeomagnetic evidence and implications to continental integrity, supercontinent form and Eocambrian break-up: Journal of Geodynamics, v. 50, p. 191–223. doi:10.1016/j.jog.2010.04.004
  • Piper, J.D.A., 2013a, A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics: Tectonophysics, v. 589, p. 44–56. doi:10.1016/j.tecto.2012.12.042
  • Piper, J.D.A., 2013b, Continental velocity through Precambrian times: The link to magmatism, crustal accretion and episodes of global cooling: Geoscience Frontiers, v. 4, p. 7–36. doi:10.1016/j.gsf.2012.05.008
  • Piper, J.D.A., 2013c, Supercontinent integrity between 0.8 and 0.6 Ga: The nemesis of Rodinia, in Roberts, N.M.W., Van Krakendonk, M., Parman, S., Shirey, S., and Clift, P.D., eds., Continental Formation through Time: Geological Society of London Special Publications, v. 389 (in press).
  • Piper, J.D.A., Basu Mallik, S., Bandyopadhyay, G., Mondal, S., and Das, A.K., 2003, Palaeomagnetic and rock magnetic study of a deeply exposed continental section in the Charnockite Belt of southern India: Implications to crustal magnetisation and palaeoproterozoic continental nucleii: Precambrian Research, v. 121, p. 185–219. doi:10.1016/S0301-9268(02)00224-3
  • Powell, C.M., Li, Z.X., McElhinny, M.W., Meert, J.G., and Park, J.K., 1993, Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana: Geology, v. 21, p. 889–892. doi:10.1130/0091-7613(1993)021<0889:PCOTOT>2.3.CO;2
  • Quade, J., Roe, L., DeCelles, P.G., and Ojha, T.P., 1997, The late Neogene 87Sr/86Sr record of lowland Himalayan rivers: Science, v. 276, p. 1828–1831. doi:10.1126/science.276.5320.1828
  • Radhakrishna, T., Chandra, R., Srivastava, A., and Balasubramonian, G., 2013, Central/Eastern Indian Bundelkhand and Bastar cratons in the Palaeoproterozoic supercontinental reconstructions: A palaeomagnetic perspective: Precambrian Research, v. 226, p. 91–104. doi:10.1016/j.precamres.2012.11.013
  • Radhakrishna, T., Joseph, M., Krishnendu, N.R., and Balasubramonian, G., 2003, Palaeomagnetism of mafic dykes in the Karnataka Craton: Possible geodynamic implications: Geological Society of India Memoir, v. 50, p. 193–224.
  • Radhakrishna, T., Krishnendu, N.R., and Balasubramonian, G., 2007, Mafic dyke magmatism around the Cuddapah basin: Age constraints, petrological characteristics and geochemical inference for a possible magma chamber on the southwestern margin of the basin: Journal of the Geol. Soc. India, v. 70, p. 194–206.
  • Reddy, S.M., and Evans, D.A.D., 2009, Palaeoproterozoic supercontinents and global evolution: Correlations from core to atmosphere, in Reddy, S.M., Mazumder, T., Evans, D.A.D., and Collins, A.S., eds., Palaeoproterozoic supercontinents and global evolution: Geological Society of London Special Publications, v. 323, p. 1–26.
  • Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., and Zhao, D., 2008, The Grenvillian and Pan-African orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume: Gondwana Research, v. 14, p. 51–72. doi:10.1016/j.gr.2008.01.001
  • Rogers, J.J.W., 1996, A history of continents in the past three billion years: The Journal of Geology, v. 104, p. 91–107. doi:10.1086/629803
  • Rogers, J.J.W., and Santosh, M., 2004, Continents and supercontinents: Oxford, Oxford University Press, 289 p.
  • Ronov, A.B., 1972, Evolution of rock composition and geochemical processes in the sedimentary shell of the Earth: Sedimentology, v. 19, p. 157–172. doi:10.1111/j.1365-3091.1972.tb00019.x
  • Rosen, O.M., Condsie, K.C., Natapov, L.M., and Nozhkin, A.D., 1994, Archaean and Early Proterozoic evolution of the Siberian craton: A preliminary assessment, in Condie, K.C., ed., Archaean crustal evolution: Amsterdam, Elsevier, p. 411–459.
  • Sandberg, P.A., 1983, An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy: Nature, v. 305, p. 19–22. doi:10.1038/305019a0
  • Santosh, M., and Omori, S., 2008, CO2 windows from mantle to atmosphere: Models on ultrahigh-temperature metamorphism and speculations on the link with melting of snowball Earth: Gondwana Research, v. 14, p. 82–96. doi:10.1016/j.gr.2007.11.001
  • Sato, K., and Siga, O., 2002, Rapid growth of continental crust between 2.2 to 1.8 Ga in the South American platform: Integrated Australian, European, North American and SW USA crustal evolution study: Gondwana Research, v. 5, p. 165–173. doi:10.1016/S1342-937X(05)70900-X
  • Sawaki, Y., Ohno, T., Fukushi, Y., Komiya, T., Ishikawa, T., Hirata, T., and Maruyama, S., 2008, Sr isotope excursion across the Precambrian–Cambrian boundary in the Three Gorges area, South China: Gondwana Research, v. 14, p. 134–147. doi:10.1016/j.gr.2007.11.002
  • Sears, J.W., and Price, R.A., 2000, New look at the Siberian connection: No SWEAT: Geology, v. 28, p. 423–426. doi:10.1130/0091-7613(2000)28<423:NLATSC>2.0.CO;2
  • Shackleton, R.M., 1973, Correlation of structures across Precambrian orogenic belts in Africa, in Tarling, D.H., and Runcorn, S.K., eds., Implications of continental drift to the earth sciences: London, Academic Press, p. 1091–1095.
  • Shields, G.A., 2007, A normalised seawater strontium isotope curve: Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth: Earth, v. 2, p. 35–42. doi:10.5194/ee-2-35-2007
  • Shields, G.A., Kimura, H., Yang, J., and Gammon, P., 2004, Sulphur isotopic evolution of Neoproterozoic-Cambrian seawater: New francolite-bound sulphate δ34S data and a critical appraisal of the existing record: Chemical Geology, v. 204, p. 163–182. doi:10.1016/j.chemgeo.2003.12.001
  • Silver, P.G., and Behn, M.D., 2008, Intermittent plate tectonics?: Science, v. 319, p. 85–88. doi:10.1126/science.1148397
  • Stein, M., and Hofmann, A.W., 1994, Mantle plumes and episodic crustal growth: Nature, v. 372, p. 63–68. doi:10.1038/372063a0
  • Stern, R.J., 1994, ARC assembly and continental collision in the neoproterozoic East African orogen: Implications for the consolidation of Gondwanaland: Annual Review of Earth and Planetary Sciences, v. 22, p. 319–351. doi:10.1146/annurev.ea.22.050194.001535
  • Stern, R.J., 2002, Crustal evolution in the East African Orogen: A Neodymium isotopic perspective: Journal of African Earth Sciences, v. 34, p. 109–117. doi:10.1016/S0899-5362(02)00012-X
  • Strik, G., De Wit, M.J., and Langereis, C.G., 2007, Palaeomagnetism of the Neoarchaean Pongola and Ventersdorp Supergroups and an appraisal of the 3.0–1.9 Ga apparent polar wander path of the Kaapvaal Craton, Southern Africa: Precambrian Research, v. 153, p. 96–115. doi:10.1016/j.precamres.2006.11.006
  • Sumner, D.Y., and Grotzinger, J.P., 1996, Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?: Geology, v. 24, p. 119–122. doi:10.1130/0091-7613(1996)024<0119:WKOACC>2.3.CO;2
  • Tang, H., and Chen, Y., 2013, Global glaciations and atmospheric change at ca. 2.3 Ga: Geoscience Frontiers, v. 4, p. 583–596. doi:10.1016/j.gsf.2013.02.003
  • Taylor, S.R., 1979, Chemical composition and evolution of the continental crust: The rare earth element evidence, in McElhinny, M.W., ed., The Earth, its origin, structure and evolution: London, Academic Press, p. 353–376.
  • Taylor, S.R., and McLennan, S.M., 1981, The rare earth element evidence in Precambrian sedimentary rocks: Implications for crustal evolution, in Kröner, A., ed., Precambrian plate tectonics: Amsterdam, Elsevier, p. 527–548.
  • Thomas, D.N., and Piper, J.D.A., 1995, Evidence for the existence of a transitional geomagnetic field recorded in a Proterozoic lava succession: Geophysical Journal International, v. 122, p. 266–282. doi:10.1111/j.1365-246X.1995.tb03553.x
  • Trail, D., Watson, E.B., and Tailby, N.D., 2011, The oxidation state of Hadean magmas and implications for early Earth’s atmosphere: Nature, v. 480, p. 79–82. doi:10.1038/nature10655
  • Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., and Wei, C.S., 2005, 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon: Contributions to Mineralogy and Petrology, v. 150, p. 561–580. doi:10.1007/s00410-005-0025-8
  • Van Heck, H.J., and Tackley, P.J., 2011, Plate tectonics on super-Earths: Equally or more likely than on Earth: Earth and Planetary Science Letters, v. 310, p. 252–261. doi:10.1016/j.epsl.2011.07.029
  • Veizer, J., 1989, Strontium isotopes in seawater through time: Annual Review of Earth and Planetary Sciences, v. 17, p. 141–167. doi:10.1146/annurev.ea.17.050189.001041
  • Vigneresse, J.L., 2005, The specific case of the Mid-Proterozoic rapakivi granites and associated suite within the context of the Columbia supercontinent: Precambrian Research, v. 137, p. 1–34. doi:10.1016/j.precamres.2005.01.001
  • Watson, J.V., 1973, Effects of reworking on high-grade gneiss complexes: Philosophical Transactions of the Royal Society London, v. A273, p. 433–456.
  • Watson, J.V., 1978, Review lecture: Ore-deposition through geological time: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 0362, p. 305–328. doi:10.1098/rspa.1978.0135
  • Watson, J.V., 1980, Flaws in the continental crust: Mercian Geologist, v. 8, p. 1–10.
  • Watson, J.V., and Crockett, R.N., 1976, Vertical movements in Proterozoic structural provinces [and discussion]: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 0280, p. 629–640. doi:10.1098/rsta.1976.0016
  • Wegener, A., 1923, The origin of continents and oceans: London, Methuen, 212 p.
  • Weil, A.B., Van Der Voo, R., MacNiocaill, C., and Meert, J.G., 1998, The Proterozoic supercontinent Rodinia: Paleomagnetically derived reconstructions for 1100 to 800 Ma: Earth and Planetary Science Letters, v. 154, p. 13–24. doi:10.1016/S0012-821X(97)00127-1
  • Williams, G.E., 2000, Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit: Reviews of Geophysics, v. 38, p. 37–59. doi:10.1029/1999RG900016
  • Williams, G.E., and Schmidt, P., 2004, Neoproterozoic glaciations: Reconciling low palaeolatitudes and the geologic record, in Jenkins, G.S., McMenamin, M., Sohl, L.E., and McKay, C.P., eds., The extreme Proterozoic: Geology, geochemistry and climate: American Geophysical Union Geophysical Monograph, v. 146, p. 145–159.
  • Williams, H., Hoffman, P.F., Lewry, J.F., Monger, J.W.H., and Rivers, T., 1991, Anatomy of North America: Thematic geologic portrayals of the continent: Tectonophysics, v. 187, p. 117–134. doi:10.1016/0040-1951(91)90416-P
  • Windley, B.F., 1995, The evolving continents (third edition): Chichester, Wiley, 526 p.
  • Worsley, T.R., Nance, D., and Moody, J.B., 1984, Global tectonics and eustasy for the past 2 billion years: Marine Geology, v. 58, p. 373–400. doi:10.1016/0025-3227(84)90209-3
  • Yeo, G.M., 1981, The Late Proterozoic Rapitan glaciation in the Northern Cordillera: Geological Survey of Canada Paper, v. 81-10, p. 25–46.
  • Zegers, T.E., De Wit, D., Dann, W., and White, S.H., 1998, Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological and palaeomagnetic test: Terra Nova, v. 10, p. 250–259. doi:10.1046/j.1365-3121.1998.00199.x
  • Zhang, J., Yan, L., and Xiongnan, H., 2007, Palaeoproterozoic crust-scale transtensional shear, detachment and ensialic mobile belts in North China: Geologic and tectonic implications for the NE-striking linear aeromagnetic anomaly: Chinese Journal of Geology, v. 42, p. 267–302.
  • Zhang, S., Li, X.Z., Evans, D.A.D., Wu, H., and Dong, J., 2012, Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new palaeomagnetic results from North China: Earth and Planetary Science Letters, v. 353–354, p. 145–155.
  • Zhao, G., Cawood, P.A., Wilde, S.A., and Sun, M., 2002, Review of global 2.1–1.8 Ga orogens: Implications for a pre-Rodinia supercontinent: Earth Science Reviews, v. 59, p. 125–162. doi:10.1016/S0012-8252(02)00073-9
  • Zhao, G.C., He, Y., and Sun, M., 2009, The Xiong’er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent: Gondwana Research, v. 16, p. 170–181. doi:10.1016/j.gr.2009.02.004
  • Zhao, G.C., Sun, M., Wilde, S.A., and Li, S.Z., 2004, A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup: Earth Science Reviews, v. 67, p. 91–123. doi:10.1016/j.earscirev.2004.02.003
  • Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., and Chen, Z., 2004, New constraints on the ages of Neoproterozoic glaciations in South China: Geology, v. 32, p. 437–440. doi:10.1130/G20286.1
  • Zhuravlev, A.Y., and Wood, R.A., 2008, Eve of biomineralization: Controls on skeletal mineralogy: Geology, v. 36, p. 923–926. doi:10.1130/G25094A.1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.