556
Views
18
CrossRef citations to date
0
Altmetric
Articles

Evolution of continental crust of the Aravalli craton, NW India, during the Neoarchaean–Palaeoproterozoic: evidence from geochemistry of granitoids

&
Pages 1510-1525 | Received 27 Feb 2014, Accepted 29 Jul 2014, Published online: 19 Aug 2014

References

  • Allègre, C.J., Birck, J.L., Capmas, F., and Courtillot, V., 1999, Age of the Deccan traps using 187Re-187Os systematics: Earth and Planetary Science Letters, v. 170, p. 197–204. doi:10.1016/S0012-821X(99)00110-7.
  • Barker, F., 1979, Trondhjemite: Definition, environment, and hypotheses of origin, in Barker, F., ed., Trondhjemites, dacites, and related rocks: Amsterdam, Elsevier, p. 1–12.
  • Barker, F., and Arth, J.G., 1976, Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites: Geology, v. 4, p. 596. doi:10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2.
  • Barth, M.G., Foley, S.F., and Horn, I., 2002, Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions: Precambrian Research, v. 113, p. 323–340. doi:10.1016/S0301-9268(01)00216-9.
  • Brenan, J.M., Shaw, H.F., Ryerson, F.J., and Phinney, D.L., 1995, Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids: Geochimica et Cosmochimica Acta, v. 59, p. 3331–3350. doi:10.1016/0016-7037(95)00215-L.
  • Campos, J.C.S., and Carneiro, M.A., 2008, Neoarchean and Paleoproterozoic granitoids marginal to the Jeceaba-Bom Sucesso lineament (SE border of the southern São Francisco craton): Genesis and tectonic evolution: Journal of South American Earth Sciences, v. 26, p. 463–484. doi:10.1016/j.jsames.2008.09.002.
  • Cassidy, K.F., Barley, M.E., Groves, D.I., Perring, C.J., and Hallberg, J.A., 1991, An overview of the nature, distribution and inferred tectonic setting of granitoids in the late-Archaean Norseman-Wiluna Belt: Precambrian Research, v. 51, p. 51–83. doi:10.1016/0301-9268(91)90094-Q.
  • Champion, D.C., and Sheraton, J.W., 1997, Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: Implications for crustal growth processes: Precambrian Research, v. 83, p. 109–132. doi:10.1016/S0301-9268(97)00007-7.
  • Champion, D.C., and Smithies, R.H., 2001, Archaean granites of the Yilgarn and Pilbara cratons, Western Australia, in Cassidy, K.F., Dunphy, J.M., and Van Kranendonk, M.J., eds., Proceedings of the fourth international Archaean symposium, September 24–28: Perth, AGSO-Geoscience Australia, p. 134–136.
  • Champion, D.C., and Smithies, R.H., 2003, Archaean granites, in Blevin, P.L., Chappell, B.W., and Jones, M., eds., Magmas to mineralisation: The Ishihara symposium: AGSO Geoscience Australia, p. 19–24.
  • Champion, D.C., and Smithies, R.H., 2007, Chapter 4.3 Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: Implications for Early Archean crustal growth, in Van Kranendonk, M.J., Smithies, R.H., and Bennett, V.C., eds., Earth’s oldest rocks, developments in Precambrian geology, Volume 15: Amsterdam, Elsevier, p. 369–409. doi:10.1016/S0166-2635(07)15043-X.
  • Chappell, B.W., 1999, Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites: Lithos, v. 46, p. 535–551. doi:10.1016/S0024-4937(98)00086-3.
  • Chauhan, D.S., 1976, Geological investigation of granites and associated metasediments around Udaipur, Rajasthan [Unpublished Ph.D. thesis]: Jaipur, University of Rajasthan, 270 p.
  • Chauhan, D.S., 1980, Amphibolites from granitic terrain, NW Udaipur city, India: Indian Journal of Earth Science, v. 8, p. 35–43.
  • Condie, K.C., 1993, Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales: Chemical Geology, v. 104, p. 1–37. doi:10.1016/0009-2541(93)90140-E.
  • Condie, K.C., 1997, Contrasting sources for upper and lower continental crust: The greenstone connection: The Journal of Geology, v. 105, p. 729–736. doi:10.1086/515980.
  • Condie, K.C., 2005, TTGs and adakites: Are they both slab melts?: Lithos, v. 80, p. 33–44. doi:10.1016/j.lithos.2003.11.001.
  • Courtillot, V., Féraud, G., Maluski, H., Vandamme, D., Moreau, M.G., and Besse, J., 1988, Deccan flood basalts and the cretaceous/tertiary boundary: Nature, v. 333, p. 843–846. doi:10.1038/333843a0.
  • Davis, W.J., Fryer, B.J., and King, J.E., 1994, Geochemistry and evolution of late Archean plutonism and its significance to the tectonic development of the Slave craton: Precambrian Research, v. 67, p. 207–241. doi:10.1016/0301-9268(94)90011-6.
  • Defant, M.J., and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, p. 662–665. doi:10.1038/347662a0.
  • Deniel, C., Vidal, P., Fernandez, A., Fort, P., and Peucat, J., 1987, Isotopic study of the Manaslu granite (Himalaya Nepal): Inferences on the age and source of Himalayan leucogranites: Contributions to Mineralogy and Petrology, v. 96, p. 78–92. doi:10.1007/BF00375529.
  • Drummond, M.S., and Defant, M.J., 1990, A model for Trondhjemite-Tonalite-Dacite genesis and crustal growth via slab melting: Archean to modern comparisons: Journal of Geophysical Research, v. 95, p. 21503–21521. doi:10.1029/JB095iB13p21503.
  • Duncan, R.A., and Pyle, D.G., 1988, Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary: Nature, v. 333, p. 841–843. doi:10.1038/333841a0.
  • Fareeduddin and Kroner, A., 1998, Single zircon age constraints on the evolution of Rajasthan granulite, in Paliwal, B.S., ed., The Indian precambrian: Jodhpur, India, Scientific Publishers, p. 547–556.
  • Gopalan, K., Macdougall, J.D., Roy, A.B., and Murali, A.V., 1990, Sm–Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India: Precambrian Research, v. 48, p. 287–297. doi:10.1016/0301-9268(90)90013-G.
  • Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqbaluddin, B.P., Prasad, B., Sahai, T.N., and Sharma, S.B., 1997, The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat: Memoir Geological Survey of India, v. 123, p. 262.
  • Halla, J., 2005, Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland: Pb and Nd isotopic constraints on crust−mantle interactions: Lithos, v. 79, p. 161–178. doi:10.1016/j.lithos.2004.05.007.
  • Halla, J., Van Hunen, J., Heilimo, E., and Hölttä, P., 2009, Geochemical and numerical constraints on Neoarchean plate tectonics: Precambrian Research, v. 174, p. 155–162. doi:10.1016/j.precamres.2009.07.008.
  • Heilimo, E., Halla, J., and Hölttä, P., 2010, Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland): Lithos, v. 115, p. 27–39. doi:10.1016/j.lithos.2009.11.001.
  • Heilimo, E., Halla, J., and Huhma, H., 2011, Single-grain zircon U–Pb age constraints of the western and eastern sanukitoid zones in the Finnish part of the Karelian Province: Lithos, v. 121, p. 87–99. doi:10.1016/j.lithos.2010.10.006.
  • Heron, A.M., 1953, The geology of central Rajputana: Memoir Geological Survey of India, v. 79, p. 1–389.
  • Irvine, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 523–548. doi:10.1139/e71-055.
  • Jahn, B.M., Glikson, A.Y., Peucat, J.-J., and Hickman, A.H., 1981, REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for the early crustal evolution: Geochimica et Cosmochimica Acta, v. 45, p. 1633–1652. doi:10.1016/S0016-7037(81)80002-6.
  • Jayananda, M., Chardon, D., Peucat, J.J., Capdevila, R., and Martin, H., 2006, 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints: Precambrian Research, v. 150, p. 1–26. doi:10.1016/j.precamres.2006.05.004.
  • Khanna, P.P., Saini, N.K., Mukherjee, P.K., and Purohit, K.K., 2009, An appraisal of ICP-MS technique for determination of REEs: Long term QC assessment of silicate rock analysis: Himalayan Geology, Series 1, v. 30, p. 95–99.
  • Manikyamba, C., Kerrich, R., Naqvi, S.M., and Ram Mohan, M., 2004a, Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramagiri-Hungund composite greenstone belt, Dharwar craton: Precambrian Research, v. 134, p. 21–39. doi:10.1016/j.precamres.2004.05.010.
  • Manikyamba, C., Khanna, T.C., Subba Rao, D.V., Charan, S.N., and Rao, T.G., 2005b, Geochemistry and petrogenesis of Gadwal Kimberlites, Eastern Dharwar Craton, India, Abstract in “Kimberlites and Related Rocks of India”: Geological Society of India, p. 67–68.
  • Manikyamba, C., Naqvi, S.M., Ram Mohan, M., and Rao, T.G., 2004b, Gold mineralisation and alteration of Penakacherla schist belt, India, constraints on Archaean subduction and fluid processes: Ore Geology Reviews, v. 24-3, p. 199–227. doi:10.1016/j.oregeorev.2003.06.001.
  • Manikyamba, C., Naqvi, S.M., Subba Rao, V., Ram Mohan, M., Khanna, T.C., Rao, T.G., and Reddy, G.L.N., 2005a, Boninites from the Neoarchaean Gadwal greenstone belt, Eastern Dharwar Craton, India: Implications for Archaean subduction processes: Earth and Planetary Science Letters, v. 230, p. 65–83. doi:10.1016/j.epsl.2004.06.023.
  • Martin, H., 1999, Adakitic magmas: Modern analogues of Archaean granitoids: Lithos, v. 46, p. 411–429. doi:10.1016/S0024-4937(98)00076-0.
  • Martin, H., and Moyen, J.F., 2005, The Archaean-Proterozoic transition: Sanukitoid and Closepet type magmatism: Mineralogical Society of Poland – Special papers, v. 26, p. 57–67.
  • Martin, H., and Moyen, J.-F., 2002, Secular changes in tonalite–trondhjemite–granodiorite composition as markers of the progressive cooling of Earth: Geology, v. 30, p. 319–322. doi:10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2.
  • Martin, H., Moyen, J.F., Martin Guitreau, M., Toft, J.B., and Pennec, J.L., 2014, Why Archaean TTG cannot be generated by MORB melting in subduction zones: Lithos, v. 198–199, p. 1–13. doi:10.1016/j.lithos.2014.02.017.
  • Martin, H., Smithies, R., Rapp, R., Moyen, J., and Champion, D., 2005, An overview of Adakite, Tonalite–Trondhjemite–Granodiorite (TTG), and Sanukitoid: Relationships and some implications for crustal evolution: Lithos, v. 79, p. 1–24. doi:10.1016/j.lithos.2004.04.048.
  • Miller, D.M., Goldstein, S.L., and Langmuir, C.H., 1994, Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents: Nature, v. 368, p. 514–520. doi:10.1038/368514a0.
  • Mondal, M.E.A., and Raza, A., 2013, Geochemistry of sanukitoid series granitoids from the Neoarchaean Berach granitoid batholiths, Aravalli Craton, Northwestern Indian shield: Current Science, v. 105, p. 102–108.
  • Moyen, J.F., Martin, H., and Jayananda, M., 2001, Multi-element geochemical modelling of crust–mantle interactions during late-Archaean crustal growth: The Closepet granite (South India): Precambrian Research, v. 112, p. 87–105. doi:10.1016/S0301-9268(01)00171-1.
  • Moyen, J.F., Martin, H., Jayananda, M., and Auvray, B., 2003, Late Archaean granites: A typology based on the Dharwar Craton (India): Precambrian Research, v. 127, p. 103–123. doi:10.1016/S0301-9268(03)00183-9.
  • Moyen, J.F., Stevens, G., Kisters, A.F.M., and Belcher, R.W., 2007, Chapter 5.6 TTG Plutons of the Barberton Granitoid-Greenstone Terrain, South Africa, in Van Kranendonk, M.J., Smithies, R.H., and Bennett, V.C., eds., Earth’s oldest rocks, developments in Precambrian geology, Volume 15: Amsterdam, Elsevier, p. 607–667. doi:10.1016/S0166-2635(07)15056-8.
  • Naqvi, S.M., Khan, R.M.K., Manikyamba, C., Ram Mohan, M., and Khanna, T.C., 2006, Geochemistry of the NeoArchaean high-Mg basalts, boninites and adakites from the Kushtagi–Hungund greenstone belt of the Eastern Dharwar Craton (EDC); implications for the tectonic setting: Journal of Asian Earth Sciences, v. 27, p. 25–44. doi:10.1016/j.jseaes.2005.01.006.
  • O’Connor, J.T., 1965, A classification for quartz-rich igneous rocks based on feldspar ratio: US Geological Survey Professional Paper, v. 525B, p. 79–84.
  • Patino Douce, A.E., 1999, What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?, in Castro, A., Fernandez, C., and Virgneressese, J.L., eds., Understanding granites: Integrating new and classical techniques, Volume 168: Geological Society of London Special Publication, p. 55–75.
  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956–983. doi:10.1093/petrology/25.4.956.
  • Rapp, R.P., Shimizu, N., Norman, M.D., and Applegate, G.S., 1999, Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa: Chemical Geology, v. 160, p. 335–356. doi:10.1016/S0009-2541(99)00106-0.
  • Rapp, R.P., and Watson, E.B., 1995, Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling: Journal of Petrology, v. 36, no. 4, p. 891–931. doi:10.1093/petrology/36.4.891.
  • Roy, A.B., and Jakhar, S.R., 2002, Geology of Rajasthan (Northwest India)—Precambrianto Recent: Jodhpur, India, Scientific Publishers, p. 421.
  • Roy, A.B., and Kröner, A., 1996, Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, northwestern Indian shield: Geological Magazine, v. 133, p. 333–342. doi:10.1017/S0016756800009067.
  • Sarangi, S., Gopalan, K., and Kumar, S., 2004, Pb–Pb age of earliest megascopic eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution: Precambrian Research, v. 132, p. 107–121. doi:10.1016/j.precamres.2004.02.006.
  • Sarkar, G., Barman, T.R., and Corfu, F., 1989, Timing of Continental Arc-Type Magmatism in Northwest India: Evidence from U–Pb Zircon Geochronology: The Journal of Geology, v. 97, p. 607–612. doi:10.1086/629337.
  • Scambelluri, M., Bottazzi, P., Trommsdorff, V., Vannucci, R., Hermann, J., Gòmez-Pugnaire, M.T., and Lòpez-Sànchez Vizcaı̀no, V., 2001, Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle: Earth and Planetary Science Letters, v. 192, p. 457–470. doi:10.1016/S0012-821X(01)00457-5.
  • Shand, S.J., 1943, Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite, 2nd edition: New York, NY, John Wiley & Sons, p. 1–444.
  • Sharma, R.S., 1995, An evolutionary model for the Precambrian crust of Rajasthan: Some petrological and geochronological considerations: Memoir Geological Society of India, v. 31, p. 91–115.
  • Shirey, S.B., and Hanson, G.N., 1984, Mantle-derived Archaean monozodiorites and trachyandesites: Nature, v. 310, p. 222–224. doi:10.1038/310222a0.
  • Smithies, R.H., 2000, The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite: Earth and Planetary Science Letters, v. 182, p. 115–125. doi:10.1016/S0012-821X(00)00236-3.
  • Stern, R.A., and Hanson, G.N., 1991, Archean high-Mg granodiorite: A derivative of light rare earth element-enriched monzodiorite of mantle origin: Journal of Petrology, v. 032, p. 201–238. doi:10.1093/petrology/32.1.201.
  • Streckeisen, A.L., 1976, To each plutonic rock its proper name: Earth-Science Reviews, v. 12, p. 1–33. doi:10.1016/0012-8252(76)90052-0.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313–345. doi:10.1144/GSL.SP.1989.042.01.19.
  • Sylvester, P.J., 1994, Archaean granite plutons, in Condie, K.C., ed., Archaean crustal evolution: Amsterdam, Elsevier, p. 261–314.
  • Taylor, S.R., and McLennan, S.M., 1985, The continental crust: Its composition and evolution: Carlton, Blackwell Scientific Publication, p. 312.
  • Verma, S.P., and Rivera-Gomez, M.A., 2013, Computer programs for the classification and nomenclature of igneous rocks: Episodes, v. 36, p. 115–124.
  • Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: Geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 407–419. doi:10.1007/BF00402202.
  • Whalen, J.B., Percival, J.A., McNicoll, V.J., and Longstaffe, F.J., 2002, A mainly crustal origin for Tonalitic Granitoid rocks, superior province, Canada: Implications for late Archean tectonomagmatic processes: Journal of Petrology, v. 43, p. 1551–1570. doi:10.1093/petrology/43.8.1551.
  • White, A.J.R., and Chappell, B.W., 1977, Ultrametamorphism and granitoid genesis: Tectonophysics, v. 43, p. 7–22. doi:10.1016/0040-1951(77)90003-8.
  • Wiedenbeck, M., and Goswami, J.N., 1994, High precision zircon geochronology using a small ion microprobe: Geochimica et Cosmochimica Acta, v. 58, p. 2135–2141. doi:10.1016/0016-7037(94)90291-7.
  • Wiedenbeck, M., Goswami, J.N., and Roy, A.B., 1996, Stabilization of the Aravalli Craton of northwestern India at 2.5 Ga: An ion microprobe zircon study: Chemical Geology, v. 129, p. 325–340. doi:10.1016/0009-2541(95)00182-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.