310
Views
10
CrossRef citations to date
0
Altmetric
Articles

Plate tectonic settings for Precambrian basic rocks from Brazil by multidimensional tectonomagmatic discrimination diagrams and their limitations

, &
Pages 1566-1581 | Received 11 Feb 2014, Accepted 02 Sep 2014, Published online: 24 Nov 2014

References

  • Agrawal, S., Guevara, M., and Verma, S.P., 2004, Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks: International Geology Review, v. 46, p. 575–594. doi:10.2747/0020-6814.46.7.575
  • Agrawal, S., Guevara, M., and Verma, S.P., 2008, Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements: International Geology Review, v. 50, p. 1057–1079. doi:10.2747/0020-6814.50.12.1057
  • Agrawal, S., and Verma, S.P., 2007, Comment on “tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006): Geochimica Et Cosmochimica Acta, v. 71, p. 3388–3390. doi:10.1016/j.gca.2007.03.036
  • Aitchison, J., 1986, The statistical analysis of compositional data: London, Chapman and Hall, 416 p.
  • Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J.A., and Pawlowsky-Glahn, V., 2000, Logratio analysis and compositional distance: Mathematical Geology, v. 32, p. 271–275. doi:10.1023/A:1007529726302
  • Arndt, N.T., Teixeira, N.A., and White, W.M., 1989, Bizarre geochemistry of komatiites from the Crixás greenstone belt, Brazil: Contributions to Mineralogy and Petrology, v. 101, p. 187–197. doi:10.1007/BF00375305
  • Bailie, R., Rajesh, H.M., and Gutzmer, J., 2012, Bimodal volcanism at the western margin of the Kaapvaal Craton in the aftermath of collisional events during the Namaqua-Natal Orogeny: The Koras Group, South Africa: Precambrian Research, v. 200-203, p. 163–183. doi:10.1016/j.precamres.2012.01.017
  • Barros, M.A.D.S.A., Júnior, F.C., Nardi, L.V.S., and Lima, E.F., 2009, Paleoproterozoic bimodal post-collisional magmatism in the southwestern Amazonian Craton, Mato Grosso, Brazil: Geochemistry and isotopic evidence: Journal of South American Earth Sciences, v. 27, p. 11–23. doi:10.1016/j.jsames.2008.11.003
  • Bas, M.J., Maitre, R.W., Streckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram: Journal of Petrology, v. 27, p. 745–750. doi:10.1093/petrology/27.3.745
  • Buccianti, A., Mateau-Figueras, G., and Pawlowsky-Glahn, V., 2006, Compositional data analysis in the geosciences: From theory to practice, London: Geological Society of London Special Publication, v. 262, 212 p.
  • Condie, K.C., and Kröner, A., 2008, When did plate tectonics begin? Evidence from the geologic record, in Condie, K.C., and Pease, V., eds., When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper 440, p. 281–294.
  • Condie, K.C., and Pease, V., 2008, Preface, in Condie, K.C., and Pease, V., eds., When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper 440, p. v–viii.
  • Cordani, U.G., and Sato, K., 1999, Crustal evolution of the South American Platform, based on Nd isotopic systematics on granitoid rocks: Episodes, v. 22, p. 167–173.
  • Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal, C., 2003, Isometric logratio transformations for compositional data analysis: Mathematical Geology, v. 35, p. 279–300. doi:10.1023/A:1023818214614
  • Ernst, W.G., 2009, Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior: Gondwana Research, v. 15, p. 243–253. doi:10.1016/j.gr.2008.06.010
  • Foley, S., 2008, A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction, in Condie, K.C., and Pease, V., eds., When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper 440, p. 31–50.
  • Furnes, H., Rosing, M., Dilek, Y., and de Wit, M., 2009, Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology: Lithos, v. 113, p. 115–132. doi:10.1016/j.lithos.2009.03.043
  • Geraldes, M.C., Bettencourt, J.S., Teixeira, W., and Matos, J.B., 2004, Geochemistry and isotopic constraints on the origin of the mesoproterozoic Rio Branco ‘anorogenic’ plutonic suite, SW of Amazonian craton, Brazil: High heat flow and crustal extension behind the Santa Helena arc?: Journal of South American Earth Sciences, v. 17, p. 195–208. doi:10.1016/j.jsames.2004.05.010
  • Hamilton, W.B., 2011, Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated: Lithos, v. 123, p. 1–20. doi:10.1016/j.lithos.2010.12.007
  • Holm, P.E., 1982, Non-recognition of continental tholeiites using the Ti-Y-Zr diagram: Contributions to Mineralogy and Petrology, v. 79, p. 308–310. doi:10.1007/BF00371522
  • Kerrich, R., and Polat, A., 2006, Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?: Tectonophysics, v. 415, p. 141–165. doi:10.1016/j.tecto.2005.12.004
  • Kloppenburg, A., White, S.H., and Zegers, T.E., 2001, Structural evolution of the Warrawoona Greenstone Belt and adjoining granitoid complexes, Pilbara Craton, Australia: Implications for Archaean tectonic processes: Precambrian Research, v. 112, p. 107–147. doi:10.1016/S0301-9268(01)00172-3
  • Korsch, R.J., Kositcin, N., and Champion, D.C., 2011, Australian island arcs through time: Geodynamic implications for the Archean and Proterozoic: Gondwana Research, v. 19, p. 716–734. doi:10.1016/j.gr.2010.11.018
  • Kuyumjian, R.M., and Jost, H., 2006, Low- and high-alumina komatiites of Goiás, Central Brazil: Journal of South American Earth Sciences, v. 20, p. 315–326. doi:10.1016/j.jsames.2005.11.003
  • Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Schmid, R., Sorensen, H., and Woolley, A.R., 2002, Igneous rocks. A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks: Cambridge, Cambridge University Press, 236 p.
  • Leat, P.T., Livermore, R.A., Millar, I.L., and Pearce, J.A., 2000, Magma supply in back-arc spreading centre segment E2, East Scotia Ridge: Journal of Petrology, v. 41, p. 845–866. doi:10.1093/petrology/41.6.845
  • Manikyamba, C., and Kerrich, R., 2012, Eastern Dharwar Craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes: Geoscience Frontiers, v. 3, p. 225–240. doi:10.1016/j.gsf.2011.11.009
  • McCall, G.J.H., 2010, New paradigm for the early Earth: Did plate tectonics as we know it not operate until the end of the Archean?: Australian Journal of Earth Sciences, v. 57, p. 349–355. doi:10.1080/08120091003677579
  • Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb1bZr1bY diagram: Chemical Geology, v. 56, p. 207–218. doi:10.1016/0009-2541(86)90004-5
  • Neder, R.D., Leite, J.A.D., Figueiredo, B.R., and Mcnaughton, N.J., 2002, 1.76 Ga volcano-plutonism in the southwestern Amazonian craton, Aripuanã-MT, Brazil: Tectono-stratigraphic implications from SHRIMP U–Pb zircon data and rock geochemistry: Precambrian Research, v. 119, p. 171–187. doi:10.1016/S0301-9268(02)00122-5
  • Oliveira, E.P., Silveira, E.M., Söderlund, U., and Ernst, R.E., 2013, U–Pb ages and geochemistry of mafic dyke swarms from the Uauá Block, São Francisco Craton, Brazil: LIPs remnants relevant for Late Archaean break-up of a supercraton: Lithos, v. 174, p. 308–322. doi:10.1016/j.lithos.2012.05.025
  • Oliveira, E.P., Souza, Z.S., McNaughton, N.J., Lafon, J.-M., Costa, F.G., and Figueiredo, A.M., 2011, The Rio Capim volcanic-plutonic-sedimentary belt, São Francisco Craton, Brazil: Geological, geochemical and isotopic evidence for oceanic arc accretion during Palaeoproterozoic continental collision: Gondwana Research, v. 19, p. 735–750. doi:10.1016/j.gr.2010.06.005
  • Pandarinath, K., 2014, Testing of the recently developed tectonomagmatic discrimination diagrams from hydrothermally altered igneous rocks of 7 geothermal fields: Turkish Journal of Earth Sciences, v. 23 (in press). doi:10.3906/yer-1401-27
  • Pandarinath, K., and Verma, S.K., 2013, Application of four sets of tectonomagmatic discriminant function based diagrams to basic rocks from northwest Mexico: Journal of Iberian Geology, v. 39, p. 181–195. doi:10.5209/rev_JIGE.2013.v39.n1.41758
  • Pearce, J.A., Baker, P.E., Harvey, P.K., and Luff, I.W., 1995, Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich Island Arc: Journal of Petrology, v. 36, p. 1073–1109. doi:10.1093/petrology/36.4.1073
  • Pearce, J.A., and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks: Contributions to Mineralogy and Petrology, v. 69, p. 33–47. doi:10.1007/BF00375192
  • Pearce, T.H., Gorman, B.E., and Birkett, T.C., 1977, The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks: Earth and Planetary Science Letters, v. 36, p. 121–132. doi:10.1016/0012-821X(77)90193-5
  • Pease, V., Percival, J., Smithies, H., Stevens, G., and Van Kranendonk, M., 2008, When did plate tectonics begin? Evidence from the orogenic record, in Condie, K.C., and Pease, V., eds., When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper 440, p. 199–228.
  • Polat, A., 2013, Geochemical variations in Archean volcanic rocks, southwestern Greenland: Traces of diverse tectonic settings in the early Earth: Geology, v. 41, p. 379–380. doi:10.1130/focus0320131.1
  • Polat, A., Frei, R., Appel, P.W.U., Fryer, B., Dilek, Y., and Ordóñez-Calderón, J.C., 2008, An overview of the lithological and geochemical characteristics of Mesoarchean (ca. 3075 Ma) Ivisaartoq greenstone belt, southern West Greenland, in Condie, K.C., and Pease, V., eds., When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper 440, p. 51–76.
  • Polat, A., Frei, R., Fryer, B., and Appel, P.W.U., 2009, The origin of geochemical trends and Eoarchean (ca. 3700Ma) zircons in Mesoarchean (ca. 3075Ma) ocelli-hosting pillow basalts, Ivisaartoq greenstone belt, SW Greenland: Evidence for crustal contamination versus crustal recycling: Chemical Geology, v. 268, p. 248–271. doi:10.1016/j.chemgeo.2009.09.004
  • Polat, A., Fryer, B.J., Appel, P.W.U., Kalvig, P., Kerrich, R., Dilek, Y., and Yang, Z., 2011, Geochemistry of anorthositic differentiated sills in the Archean (~2970Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs: Lithos, v. 123, p. 50–72. doi:10.1016/j.lithos.2010.12.003
  • Rivalenti, G., Mazzucchelli, M., Girardi, V.A.V., Cavazzini, G., Finatti, C., Barbieri, M.A., and Teixeira, W., 1998, Petrogenesis of the Paleoproterozoic basalt-andesite-rhyolite dyke association in the Carajás region, Amazonian craton: Lithos, v. 43, p. 235–265. doi:10.1016/S0024-4937(98)00015-2
  • Rosset, A., De Min, A., Marques, L.S., Macambira, M.J.B., Ernesto, M., Renne, P.R., and Piccirillo, E.M., 2007, Genesis and geodynamic significance of Mesoproterozoic and Early Cretaceous tholeiitic dyke swarms from the São Francisco craton (Brazil): Journal of South American Earth Sciences, v. 24, p. 69–92. doi:10.1016/j.jsames.2007.02.002
  • Scandolara, J.E., Fuck, R.A., Dall’Agnol, R., and Dantas, E.L., 2013b, Geochemistry and origin of the early Mesoproterozoic mangerite-charnockite-rapakivi granite association of the Serra da Providência suite and associated gabbros, central-eastern Rondônia, SW Amazonian Craton, Brazil: Journal of South American Earth Sciences, v. 45, p. 166–193. doi:10.1016/j.jsames.2013.03.003
  • Scandolara, J.E., Fuck, R.A., Dantas, E.L., and Souza, V.S., 2013a, Geochemistry of Jamari complex, central-eastern Rondônia: Andean-type magmatic arc and Paleoproterozoic crustal growth of the southwestern Amazonian Craton, Brazil: Journal of South American Earth Sciences, v. 46, p. 35–62. doi:10.1016/j.jsames.2013.04.002
  • Shervais, J.W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas: Earth and Planetary Science Letters, v. 59, p. 101–118. doi:10.1016/0012-821X(82)90120-0
  • Sheth, H.C., 2008, Do major oxide tectonic discrimination diagrams work? Evaluating new log-ratio and discriminant-analysis-based diagrams with Indian Ocean mafic volcanics and Asian ophiolites: Terra Nova, v. 20, p. 229–236. doi:10.1111/j.1365-3121.2008.00811.x
  • Shirey, S.B., Kamber, B.S., Whitehouse, M.J., Mueller, P.A., and Basu, A.R., 2008, A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction, in Condie, K.C., and Pease, V., eds., When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper 440, p. 1–30.
  • Silveira, E.M., Söderlund, U., Oliveira, E.P., Ernst, R.E., and Leal, A.B.M., 2013, First precise U–Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications: Lithos, v. 174, p. 144–156. doi:10.1016/j.lithos.2012.06.004
  • Souza, Z.S., Potrel, A., Lafon, J.-M., Althoff, F.J., Pimentel, M.M., Dall’Agnol, R., and De Oliveira, C.G., 2001, Nd, Pb and Sr isotopes in the Identidade Belt, an Archaean greenstone belt of the Rio Maria region (Carajás Province, Brazil): Implications for the Archaean geodynamic evolution of the Amazonian Craton: Precambrian Research, v. 109, p. 293–315. doi:10.1016/S0301-9268(01)00164-4
  • Stern, R.J., 2008, Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth’s tectonic history, in Condie, K.C., and Pease, V., eds., When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper 440, p. 265–280.
  • Thomas, C.W., and Aitchison, J., 2005, Compositional data analysis of geological variability and process: A case study: Mathematical Geology, v. 37, p. 753–772. doi:10.1007/s11004-005-7378-4
  • Van Kranendonk, M.J., 2010, Two types of Archean continental crust: Plume and plate tectonics on early earth: American Journal of Science, v. 310, p. 1187–1209. doi:10.2475/10.2010.01
  • Verma, S.K., and Oliveira, E.P., 2013, Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings: Journal of South American Earth Sciences, v. 45, p. 117–146. doi:10.1016/j.jsames.2013.03.009
  • Verma, S.K., and Oliveira, E.P., 2014, Tectonic setting of basic igneous and metaigneous rocks of Borborema Province, Brazil using multi-dimensional geochemical discrimination diagrams: Journal of South American Earth Sciences (in press). doi:http://dx.doi.org/10.1016/j.jsames.2014.08.010
  • Verma, S.K., Pandarinath, K., and Verma, S.P., 2012, Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks: International Geology Review, v. 54, p. 325–347. doi:10.1080/00206814.2010.543784
  • Verma, S.P., 2010, Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams: Turkish Journal of Earth Sciences, v. 19, p. 185–238.
  • Verma, S.P., 2012a, Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain: Comunicações Geológicas, v. 99, p. 79–93.
  • Verma, S.P., 2012b, Geochemometrics: Revista Mexicana de Ciencias Geológicas, v. 29, p. 276–298.
  • Verma, S.P., 2013, Application of 50 multi-dimensional discrimination diagrams and significance tests: Deciphering compositional similarities and differences between Hawaiian and Icelandic volcanism: International Geology Review, v. 55, p. 1553–1572. doi:10.1080/00206814.2013.788239
  • Verma, S.P., and Agrawal, S., 2011, New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes: Revista Mexicana de Ciencias Geológicas, v. 28, p. 24–44.
  • Verma, S.P., Guevara, M., and Agrawal, S., 2006, Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data: Journal of Earth System Science, v. 115, p. 485–528. doi:10.1007/BF02702907
  • Verma, S.P., Pandarinath, K., and Verma, S.K., 2010a, Statistically correct methodology for compositional data in new discriminant function tectonomagmatic diagrams and application to ophiolite origin: Advances in Geosciences, v. 27, Solid Earth Science, p. 11–22.
  • Verma, S.P., Pandarinath, K., Verma, S.K., and Agrawal, S., 2013, Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks: Lithos, v. 168–169, p. 113–123. doi:10.1016/j.lithos.2013.01.014
  • Verma, S.P., and Rivera-Gómez, M.A., 2013a, Computer programs for the classification and nomenclature of igneous rocks: Episodes, v. 36, p. 115–124.
  • Verma, S.P., and Rivera-Gómez, M.A., 2013b, New computer program TecD for tectonomagmatic discrimination from discriminant function diagrams for basic and ultrabasic magmas and its application to ancient rocks: Journal of Iberian Geology, v. 39, p. 167–179. doi:10.5209/rev_JIGE.2013.v39.n1.41757
  • Verma, S.P., Rodríguez-Ríos, R., and González-Ramírez, R., 2010b, Statistical evaluation of classification diagrams for altered igneous rocks: Turkish Journal of Earth Sciences, v. 19, p. 239–265.
  • Verma, S.P., Torres-Alvarado, I.S., and Sotelo-Rodrı́guez, Z.T., 2002, SINCLAS: Standard igneous norm and volcanic rock classification system: Computers & Geosciences, v. 28, p. 711–715. doi:10.1016/S0098-3004(01)00087-5
  • Verma, S.P., Torres-Alvarado, I.S., and Velasco-Tapia, F., 2003, A revised CIPW norm: Schweizerische Mineralogische und Petrographische Mitteilungen, v. 83, p. 197–216.
  • Verma, S.P., and Verma, S.K., 2013, First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against postemplacement compositional changes and petrogenetic processes: Turkish Journal of Earth Sciences, v. 22, p. 931–995. doi:10.3906/yer-1204-6
  • Verma, S.P., Verma, S.K., and Oliveira, E.P., 2015, Application of 55 multi-dimensional tectonomagmatic discrimination diagrams to Precambrian belts: International Geology Review, v. 57, p. 1365–1388. doi:10.1080/00206814.2014.921125
  • Verma, S.P., Verma, S.K., Pandarinath, K., and Rivera-Gómez, M.A., 2011, Evaluation of recent tectonomagmatic discrimination diagrams and their application to the origin of basic magmas in Southern Mexico and Central America: Pure and Applied Geophysics, v. 168, p. 1501–1525. doi:10.1007/s00024-010-0173-2
  • Wang, P., and Glover III, L., 1992, A tectonics test of the most commonly used geochemical discriminant diagrams and patterns: Earth-Science Reviews, v. 33, p. 111–131. doi:10.1016/0012-8252(92)90022-L

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.